JOHN DEE (1527-1608)

1590 – London, England

portrait of john dee

JOHN DEE

‘Mathematician, cartographer & astronomer. Prolific author, natural magician, alchemist.’

‘Alternative knowledge and methods of learning. ‘Conversations with Angels’. Human power over the world (neo-Platonism).’

Dee was a Hermetic philosopher, a major influence on the ROSICRUCIANS, possibly a spy – astrologer and adviser to Queen Elizabeth I ; he chose the day of her coronation.

One of the greatest scholars of his day. His library in his home in Mortlake, London, contained more than 3,000 books.

Greatly influenced by Edward Kelley (1555- 97), whom he met in 1582; from 1583-1589 Dee and Kelley sought the patronage of assorted mid-European noblemen and kings, eventually finding it from the Bohemian Count Vilem Rosenberg.

In 1589, Dee left Kelley to his alchemical research and returned to England where Queen Elizabeth I granted him a position as a college warden, but he had lost respect owing to his occult reputation. Dee returned to Mortlake in 1605 in poor health and increasing poverty and ended his days as a common fortune-teller.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

WILLIAM GILBERT (1540-1603)

1600 – England

‘Gilbert’s principal area of study related to magnetism, however, his method of enquiry is equally significant’

portrait of WILLIAM GILBERT ©

WILLIAM GILBERT

Gilbert rejected the scholastics’ approach to science, preferring the experimental method, which he applied to the Earth’s magnetic properties.
He carried out some of the first systematic studies of the lodestone in Europe and showed that the Earth acts as a bar magnet with magnetic poles.

His celebrated text, ‘De magnete, magnetisque corporibus, et de magno magnete tellure‘ (On the Magnetic, Magnetic Bodies and the Great Magnet Earth – 1600) is considered to be one of the first truly scientific texts.
Gilbert received his medical training in Cambridge and practiced as a physician in London. He became president of the College of Physicians and was physician to Queen Elizabeth I.

In the time of Elizabeth I and Shakespeare, England was still largely a place of superstition and religious fervor. Gilbert concurred with Copernicus, a potentially dangerous sentiment in an era when elsewhere in Europe others such as Giordano Bruno and later GALILEO were being persecuted (and in the case of Bruno, executed) for sharing the same opinion.


Magnetism was to cast its influence in the eighteenth century, displayed through the electric fluid of GALVANI and VOLTA
.

He distinguished the properties of magnetism from the attractive effect produced by friction with amber. In so doing he introduced the term that was to become electricity.
He introduced a number of expressions to the English language including: magnetic pole, electric force and electric attraction.
A term of magneto motive force, the gilbert, is named after him.

Gilbert and others postulated that magnetism is the force holding the planets in their orbits.

Wikipedia-logo © (link to wikipedia)

JOHANNES KEPLER (1571-1630)TIMELINE

FRANCIS BACON (1561-1626)

1620 – England

‘Scientific laws must be based on observations and experiments’

Bacon rejected ARISTOTLE‘s deductive or a priori, approach to reasoning and suggested his own, inductive, or a posteriori, approach. Bacon developed the scientific method – but he did not make any significant scientific discovery.

‘I shall content myself to awake better spirits like a bell-ringer, who is first up to call others to church’

Portrait of FRANCIS BACON ©

FRANCIS BACON

Bacon, a philosopher, advocated a new method of enquiry, completely different from the philosophical methods of the ancient Greeks, in his book Novum Organum – which has influenced scientists since its publication in 1620.

The text proposed the sentiment of ‘The Advancement of Learning’ (1605) signaling dissatisfaction with the limits of, and approaches to, knowledge to date and foresaw a future where the ancient masters would be far surpassed – Aristotle had written a text called Organum or ‘Logical Works’ and Bacon’s ‘new’ approach suggested an alternative direction to scientific study.

Bacon strongly criticised Aristotle’s deductive method of science, which involved formulating abstract ideas and ‘logically’ building upon them step-by-step to find ‘truths’, without thorough consideration of whether the theoretical foundation in itself was ever valid.

Rather than rely on superstition or accept unquestioningly the flawed solutions of the ancient academics as had largely been the case for two thousand years, Bacon’s alternative was to argue for ‘inductive’ reason, where the only ‘certain’ statements that should ever be made were based on observation and proof collected from the natural world. The essence of his method is to collect masses of data by observations and experiments, analyse facts by drawing up tables of negative, affirmative and variable instances of the phenomenon ( ‘Tables of Comparative Instances’ ), draw (induce) hypotheses from the evidence, then to collect further evidence to proceed towards a more general theory. The most important aspect of this method was the idea of drawing up tentative hypotheses from available data and then verifying them by further investigations.

‘A true and fruitful natural philosophy has a double scale or ladder ascendant or descendant, ascending from experiments to axioms and descending from axioms to the invention of new experiments’, he wrote in Novum Organum.

Bacon cautioned those trying to practice his new method, urging them to repudiate four kinds of intellectual idol

  • Perceptual Illusions – ‘idols of the tribe’

  • Personal biases – ‘idols of the cave’

  • Linguistic confusions – ‘idols of the market place’

  • Dogmatic philosophical systems – ‘idols of the theatre’

more

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

WILLIAM HARVEY (1578-1657)

1628 – London, England

‘Circulation of the blood’

Portrait of WILLIAM HARVEY ©

WILLIAM HARVEY M.D.

As WILLIAM GILBERT had begun in physics, and FRANCIS BACON had subsequently implored, Harvey was the first to take a rational, modern, scientific approach to his observations in biology. Rather than taking the approach of the philosophers, which placed great emphasis upon thinking about what might be the case, Harvey cast aside prejudices and only ‘induced’ conclusions based on the results of experiments and dissections, which could be repeated identically again and again.

After what GALEN had begun and VESALIUS had challenged, Harvey credibly launched perhaps the most significant theory in his field of biology. He postulated and convincingly proved that blood circulated in the body via the heart – itself little more than a biological pump.

Galen had concluded that blood was made in the liver from food, which acted as a fuel, which the body used up, thereby requiring more food to keep a constant supply. Vesalius added little to this theory. Harvey, physician to Kings James I and later Charles I proved his theory of circulation through rigorous and repeated experimentation. He correctly concluded that blood was not used up, but is recycled around the body.

An illustration depicting William Harvey (April 1, 1578 - June 3, 1657), the medical doctor credited with first describing the properties of the human circulatory system, seeing a patient. ©

 

His dissections proved that the arteries took blood from the heart to the extremities of the body, able to do so because of the heart’s pump-like action. He could see that the pulses in arteries came immediately after the heart contracted, and became certain that the pulse was due to blood flowing into the vessels.
By careful observation he found that blood entered the right side of the heart and was forced into the lungs, before returning to the left side of the heart. From there it was pumped via the aorta into the arteries around the body.

Harvey realized that the amount of blood flowing around the system was too much for the liver to produce. The blood had to be circulating back to the veins; which, with their series of one-way valves, brought blood back to the heart.
Without a microscope it was impossible to see the minute capillaries that linked the arteries to the veins.

Exercitatio anatomica de motu cordis et sanguinis in animalibus William Harvey (1628)

Harvey published his findings in the 720 page ‘Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus‘ ( Anatomical Exercise on the Motion of The Heart and Blood in Animals ) at the Frankfurt Book Fair in 1628.

Initially supported by some academics, an equal number rejected his ideas. One area of weakness was that he was unable to offer a proven explanation for how the blood moved from the arteries to the veins. He speculated that the exchange took place through vessels too small for the human eye to see, which was confirmed shortly after his death with the discovery of capillaries by Marcello Malphigi with the recently invented microscope.

Even then, nobody knew what blood was doing. It would take another hundred years before ANTOINE LAVOISIER discovered oxygen and worked out what it did in the body.

In 1651, Harvey published ‘Exercitationes de Generatione Animalium‘ ( Essays on the Generation of Animals ), a work in the area of reproduction which included conjecture that rejected the ‘spontaneous generation’ theory of reproduction which had hitherto persisted. His belief that the egg was at the root of life gained acceptance long before the observational proof some two centuries later.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

Related sites

ROBERT BOYLE (1627- 91)

1662 – England

‘The volume of a given mass of a gas at constant temperature is inversely proportional to its pressure’

If you double the pressure of a gas, you halve its volume. In equation form: pV = constant; or p1V1 = p2V2 where the subscripts 1 & 2 refer to the values of pressure and volume at any two readings during the experiment.

Born at Lismore Castle, Ireland, Boyle was a son of the first Earl of Cork. After four years at Eton College, Boyle took up studies in Geneva in 1638. In 1654 he moved to Oxford where in 1656, with the philosopher John Locke and the architect Christopher Wren, he formed the experimental Philosophy Club and met ROBERT HOOKE, who became his assistant and with whom he began making the discoveries for which he became famous.

Robert Boyle. New Experiments Physico-Mechanical. Oxford: Thomas Robinson, 1662

New Experiments Physico-Mechanical 1662

In 1659, with Hooke, Boyle made an efficient vacuum pump, which he used to experiment on respiration and combustion, and showed that air is necessary for life as well as for burning. They placed a burning candle in a jar and then pumped the air out. The candle died. Glowing coal ceased to give off light, but would start glowing again if air was let in while the coal was still hot. In addition they placed a bell in the jar and again removed the air. Now they could not hear it ringing and so they found that sound cannot travel through a vacuum.

Boyle proved Galileo’s proposal that all matter falls at equal speed in a vacuum.

He established a direct relationship between air pressure and volumes of gas. By using mercury to trap some air in the short end of a ‘J’ shaped test tube, Boyle was able to observe the effect of increased pressure on its volume by adding more mercury. He found that by doubling the mass of mercury (in effect doubling the pressure), the volume of the air in the end halved; if he tripled it, the volume of air reduced to a third. His law concluded that as long as the mass and temperature of the gas is constant, then the pressure and volume are inversely proportional.

Boyle appealed for chemistry to free itself from its subservience to either medicine or alchemy and is responsible for the establishment of chemistry as a distinct scientific subject. His work promoted an area of thought which influenced the later breakthroughs of ANTOINE LAVOISIER (1743-93) and JOSEPH PRIESTLY (1733-1804) in the development of theories related to chemical elements.

Boyle extended the existing natural philosophy to include chemistry – until this time chemistry had no recognised theories.

The idea that events are component parts of regular and predictable processes precludes the action of magic.
Boyle sought to refute ARISTOTLE and to confirm his atomistic or ‘corpuscular’ theories by experimentation.

In 1661 he published his most famous work, ‘The Skeptical Chymist’, in which he rejected Aristotle’s four elements – earth, water, fire and air – and proposed that an element is a material substance consisting at root of ‘primitive and simple, or perfectly unmingled bodies’, that it can be identified only by experiment and can combine with other elements to form an infinite number of compounds.

The book takes the form of a dialogue between four characters. Boyle represents himself in the form of Carneades, a person who does not fit into any of the existing camps, as he disagrees with alchemists and sees chemists as lazy hobbyists. Another character, Themistius, argues for Aristotle’s four elements; while Philoponus takes the place of the alchemist, Eleutherius stands in as an interested bystander.

In the conclusion he attacks chemists.

page from one of Boyle's publications“I think I may presume that what I have hitherto Discursed will induce you to think, that Chymists have been much more happy finding Experiments than the Causes of them; or in assigning the Principles by which they may be best explain’d”
He pushes the point further: “me thinks the Chymists, in the searches after truth, are not unlike the Navigators of Solomon’s Tarshish Fleet, who brought home Gold and Silver and Ivory, but Apeas and Peacocks too; For so the Writings of several (for I say not, all) of your Hermetick Philosophers present us, together with divers Substantial and noble Experiments, Theories, which either like Peacock’s feathers made a great show, but are neither solid nor useful, or else like Apes, if they have some appearance of being rational, are blemished with some absurdity or other, that when they are Attentively consider’d, makes them appear Ridiculous”

The critical message from the book was that matter consisted of atoms and clusters of atoms. These atoms moved about, and every phenomenon was the result of the collisions of the particles.

He was a founder member of The Royal Society in 1663. Unlike the Accademia del Cimento the Royal Society thrived.

Like FRANCIS BACON he experimented relentlessly, accepting nothing to be true unless he had firm empirical grounds from which to draw his conclusions. He created flame tests in the detection of metals and tests for identifying acidity and alkalinity.

It was his insistence on publishing chemical theories supported by accurate experimental evidence – including details of apparatus and methods used, as well as failed experiments – which had the most impact upon modern chemistry.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

NEXT buttonCHEMISTRY

NEXT buttonGAS LAWS

ROBERT HOOKE (1635-1703)

1670 – England

‘Within the limits of elasticity, the extension ( Strain ) of an elastic material is proportional to the applied stretching force ( Stress )’

Hooke’s law applies to all kinds of materials, from rubber balls to steel springs. The law helps define the limits of elasticity of a material.

In equation form; the law is expressed as F = kx, where F is force, x change in length and k is a constant. The constant is known as Young’s Modulus, after THOMAS YOUNG who in 1802 gave physical meaning to k.

Boyle and Hooke formed the nucleus of scientists at Gresham College in Oxford who were to create the Royal Society in 1662 and Hooke served as its secretary until his death. Newton disliked Hooke’s combative style (Hooke accused Newton of plagiarism, sparking a lifelong feud between the two) and refused to attend Royal Society meetings while Hooke was a secretary.

Hooke mistrusted his contemporaries so much that when he discovered his law he published it as a Latin anagram, ceiiinosssttvu, in his book on elasticity.

Two years later, when he was sure that the law could be proved by experiments on springs, he revealed that the anagram meant Ut tensio sic vis. That is, the power of any spring is in the same proportion with the tension thereof.

At the same time, in 1665 Hooke published his work Micrographia presenting fifty-seven illustrations drawn by him of the wonders seen with the microscope.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Related sites

ISAAC NEWTON (1642-1727)

1687 – England

‘Any two bodies attract each other with a force proportional to the product of their masses and inversely proportional to the square of the distance between them’

portrait of NEWTON ©

NEWTON

The force is known as gravitation
Expressed as an equation:

F = GmM/r2

where F is Force, m and M the masses of two bodies, r the distance between them and G the gravitational constant
This follows from KEPLER’s laws, Newton’s laws of motion and the laws of conic sections. Gravitation is the same thing as gravity. The word gravity is particularly used for the attraction of the Earth for other objects.

Gravitation
Newton stated that the law of gravitation is universal; it applies to all bodies in the universe. All historical speculation of different mechanical principles for the earth from the rest of the cosmos were cast aside in favour of a single system. He demonstrated that the planets were attracted toward the Sun by a force varying as the inverse square of the distance and generalized that all heavenly bodies mutually attract one another. Simple mathematical laws could explain a huge range of seemingly disconnected physical facts, providing science with the straightforward explanations it had been seeking since the time of the ancients. That the constant of gravitation is in fact constant was proved by careful experiment, that the focus of a body’s centre of gravity appears to be a point at the centre of the object was proved by his calculus.

Calculus
The angle of curve, by definition, is constantly changing, so it is difficult to calculate at any particular point. Similarly, it is difficult to calculate the area under a curve. Using ARCHIMEDES’ method of employing polygons and rectangles to work out the areas of circles and curves, and to show how the tangent or slope of any point of a curve can be analyzed, Newton developed his work on the revolutionary mathematical and scientific ideas of RENE DESCARTES, which were just beginning to filter into England, to create the mathematics of calculus. Calculus studies how fast things change.
The idea of fluxions has become known as differentiation, a means of determining the slope of a line, and integration, of finding the area beneath a curve.

Newton’s ideas on universal gravitation did not emerge until he began a controversial correspondence with ROBERT HOOKE in around 1680. Hooke claimed that he had solved the problem of planetary motion with an inverse square law that governed the way that planets moved. Hooke was right about the inverse square law, but he had no idea how it worked or how to prove it, he lacked the genius that permitted Newton to combine Kepler’s laws of planetary motion with the assumption that an object falling towards Earth was the same kind of motion as the Earth’s falling toward the Sun.
It was not until EDMUND HALLEY challenged Newton in 1684 to show how planets could have the elliptical orbits described by Johannes Kepler, supposing the force of attraction by the Sun to be the reciprocal of their distance from it – and Newton replied that he already knew – that he fully articulated his laws of gravitation.

It amounts to deriving Kepler’s first law by starting with the inverse square hypothesis of gravitation. Here the Sun attracts each of the planets with a force that is inversely proportional to the square of the distance of the planet from the Sun. From Kepler’s second law, the force acting on the planets is centripetal. Newton says this is the same as gravitation.

In the previous half century, Kepler had shown that planets have elliptical orbits and GALILEO had shown that things accelerate at an even pace as they fall towards the ground. Newton realized that his ideas about gravity and the laws of motion, which he had only applied to the Earth, might apply to all physical objects, and work for the heavens too. Any object that has mass will be pulled towards any other object. The larger the mass, the greater the pull. Things were not simply falling but being pulled by an invisible force. Just as this force (of gravity) pulls things towards the Earth, it also keeps the Moon in its orbit round the Earth and the planets moving around the Sun. With mathematical proofs he showed that this force is the same everywhere and that the pull between two things depends on their mass and the square of the distance between them.

Title page of Philosophiae Naturalis Principia Mathematica

Title page of Philosophiae Naturalis Principia Mathematica

Newton published his law of gravitation in his magnum opus Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) in 1687. In it Newton analyzed the motion of orbiting bodies, projectiles, pendulums and free fall near the Earth.

The first book of Principia states the laws of motion and deals with the general principles of mechanics. The second book is concerned mainly with the motion of fluids. The third book is considered the most spectacular and explains gravitation.

Why do two objects attract each other?
‘I frame no hypotheses’, said Newton

It was Newton’s acceptance of the possibility that there are mysterious forces in the world, his passions for alchemy and the study of the influence of the Divine that led him to the idea of an invisible gravitational force – something that the more rationally minded Galileo had not been able to accept.
Newton’s use of mathematical expression of physical occurrences underlined the standard for modern physics and his laws underpin our basic understanding of how things work on an everyday scale. The universality of the law of gravitation was challenged in 1915 when EINSTEIN published the theory of general relativity.

1670-71 Newton composes ‘Methodis Fluxionum‘, his main work on calculus, which is not published until 1736. His secrecy meant that in the intervening period, the German mathematician LEIBNIZ could publish his own independently discovered version – he gave it the name calculus, which stuck.

LAWS OF MOTION

1687 – England

  • First Law: An object at rest will remain at rest and an object in motion will remain in motion at that velocity until an external force acts on the object

  • Second Law: The sum of all forces (F) that act on an object is equal to the mass (m) of the object multiplied by the acceleration (a), or F = ma

  • Third Law: To every action, there is an equal and opposite reaction

The first law

introduces the concept of inertia, the tendency of a body to resist change in its velocity. The law is completely general, applying to all objects and any force. The inertia of an object is related to its mass. Things keep moving in a straight line until they are acted on by a force. The Moon tries to move in a straight line, but gravity pulls it into an orbit.
Weight is not the same as mass.

The second law

explains the relationship between mass and acceleration, stating that a force can change the motion of an object according to the product of its mass and its acceleration. That is, the rate and direction of any change depends entirely on the strength of the force that causes it and how heavy the object is. If the Moon were closer to the Earth, the pull of gravity between them would be so strong that the Moon would be dragged down to crash into the Earth. If it were further away, gravity would be weaker and the Moon would fly off into space.

The third law

shows that forces always exist in pairs. Every action and reaction is equal and opposite, so that when two things crash together they bounce off one another with equal force.

LIGHT

1672 – New Theory about Light and Colours is his first published work and contains his proof that white light is made up of all colours of the spectrum. By using a prism to split daylight into the colours of the rainbow and then using another to recombine them into white light, he showed that white light is made up of all the colours of the spectrum, each of which is bent to a slightly different extent when it passes through a lens – each type of ray producing a different spectral colour.

Newton also had a practical side. In the 1660s his reflecting telescope bypassed the focusing problems caused by chromatic aberration in the refracting telescope of the type used by Galileo. Newton solved the problem by swapping the lenses for curved mirrors so that the light rays did not have to pass through glass but reflected off it.

At around the same time, the Dutch scientist CHRISTIAAN HUYGENS came up with the convincing but wholly contradictory theory that light travels in waves like ripples on a pond. Newton vigorously challenged anyone who tried to contradict his opinion on the theory of light, as Robert Hooke and Leibniz, who shared similar views to Huygens found out. Given Newton’s standing, science abandoned the wave theory for the best part of two hundred years.

1704 – ‘Optiks’ published. In it he articulates his influential (if partly inaccurate) particle or corpuscle theory of light. Newton suggested that a beam of light is a stream of tiny particles or corpuscles, traveling at huge speed. If so, this would explain why light could travel through a vacuüm, where there is nothing to carry it. It also explained, he argued, why light travels in straight lines and casts sharp shadows – and is reflected from mirrors. His particle theory leads to an inverse square law that says that the intensity of light varies as the square of its distance from the source, just as gravity does. Newton was not dogmatic in Optiks, and shows an awareness of problems with the corpuscular theory.

In the mid-eighteenth century an English optician John Dolland realized that the problem of coloured images could largely be overcome by making two element glass lenses, in which a converging lens made from one kind of glass was sandwiched together with a diverging lens made of another type of glass. In such an ‘achromatic’ lens the spreading of white light into component colours by one element was cancelled out by the other.

During Newton’s time as master of the mint, twenty-seven counterfeiters were executed.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

GRAVITYGRAVITY

LIGHTLIGHT

Related articles

THOMAS NEWCOMEN (1663-1729)

1712 – England

‘Uses the property of condensing steam to create a partial vacuüm in a cylinder and therefore pull a piston. The system was highly inefficient but was used to pump water from mines’

Today, the credit for the steam engine is usually given to James Watt, while the name Thomas Newcomen remains shrouded in obscurity.

The design of his low-pressure steam engine involved heating water underneath a large piston that was encased in a cylinder.

Steam that was released as a result of the heating forced the piston upwards. A jet of water was then released from a tank above the piston. The sudden cooling of the steam made it condense, creating a partial vacuüm which atmospheric pressure then pushed down on, forcing the piston downwards again. The piston was attached to a two-headed lever, the other side of which was attached to a pump in the mineshaft. As it moved up and down, the lever moved likewise and a pumping motion was created in the shaft, which could be used to eject floodwater.

The first engine could remove about 120 gallons per minute, completing about twelve strokes in that time, and had the equivalent of about 5.5 horsepower. Even though the engine was still not particularly powerful, was hugely inefficient to run, and burnt huge amounts of coal, it would work reliably 24-hours a day.

The steam engine originally developed by Newcomen for work in the mines was quickly developed by engineers like JAMES WATT and RICHARD TREVITHICK (1771-1833) into the steam locomotive.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

JOSEPH BLACK (1728- 99)

1757 – Edinburgh

‘Different quantities of heat are required to bring equal weights of different materials to the same temperature’

This definition relates to the concept of specific heat.

Through meticulous experimentation and measurement of results he discovered the concept of ‘latent heat’, the ability of matter to absorb heat without necessarily changing in temperature.
True in the transformation of ice into water at 0degrees C, the same principle applies in the process of transforming water to steam and indeed, all solids to liquids and all liquids to gases.
Through this work Black made the important distinction between heat and temperature.

JAMES WATT benefited from these discoveries during his development of the condensing steam engine.

‘Fixed Air’

Black’s insistence on the importance of quantitative experiments was a step towards setting the standard for modern chemistry.

Black found that heating or treating carbonate salts with acid resulted in the release of a gas that, he reasoned, must have been ‘fixed’ in the solids. He outlined the cycle of chemical changes from limestone (calcium carbonate) to quicklime (calcium oxide) and ‘fixed air’ (carbon dioxide) when heated; quicklime mixed with water to become slaked lime (calcium hydroxide); which when combined with ‘fixed air’ becomes limestone again (turning the solution cloudy).

Although JAN BAPTISTA VAN HELMONT had identified the existence of separate, distinct gases in air over a century before, Black is still often credited with the discovery of carbon dioxide (fixed air) – despite that van Helmont had clearly been aware of its existence.

Black was able to prove that carbon dioxide is made by respiration, through fermentation and in the burning of charcoal, but that the gas would not allow a candle to burn in it nor sustain animal life.

Black’s student Daniel Rutherford (1749 – 1819) called the gas ‘mephitic air’ after the mephitis of legend, a noxious emanation said to cause pestilence, for animals died in an atmosphere of the new gas. Rutherford’s ‘air’ is not, however, the same as Lavoisier’s mephitic air, which is nitrogen (azote).

Observing the effect that removing carbon dioxide from limestone made the latter more alkaline, Black deduced that carbon dioxide is an acidic gas.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

JAMES WATT (1736-1819)

1765 – Glasgow, Lanarkshire, UK

‘Steam engine’

Watt’s steam engine was the driving force behind the industrial revolution and his development of the rotary engine in 1781 brought mechanisation to several industries such as weaving, spinning and transportation.

Portrait of JAMES WATT who developed the steam engine ©

JAMES WATT

Although THOMAS NEWCOMEN had developed the steam engine before Watt was even born, Newcomen’s machines had been confined to the world of mining.

In 1764, when Watt was asked to repair a scale model of Newcomen’s engine he noted its huge inefficiency. The heating and cooling of the cylinder with every stroke wasted huge amounts of fuel; and wasted time in bringing the cylinder back up to steam producing temperature, which limited the frequency of strokes. He realised that the key to improved efficiency lay in condensing the steam in a separate container – thereby allowing the cylinder and piston to remain always hot. Watt continued to improve his steam engine and developed a way to make it work with a circular, rotary motion. Another of his improvements was the production of steam under pressure, thus increasing the temperature gap between source and sink and raising the efficiency in a manner later described by SADI CARNOT and elucidated by JAMES JOULE.

Richard_Arkwright_by_Mather_Brown_1790

RICHARD ARKWRIGHT

RICHARD ARKWRIGHT was the first to realise the engine could be used to spin cotton, and later in weaving. Flour and paper mills were other early adopters, and in 1788 steam power was used to paddle marine transportation. In the same year, Watt developed the ‘centrifugal governor’ to regulate the speed of the engine and to keep it constant.

diagram of the Watt 10hp engine

Watt 10hp engine

Watt was the first to coin the term ‘horsepower’, which he used when comparing how many horses it would require to provide the same pull as one of his machines. In 1882 the British Association named the ‘watt’ unit of power in his honour.

Wikipedia-logo © (link to wikipedia)

HENRY CAVENDISH (1731-1810)TIMELINE

HEATHEAT

JOHN DALTON (1766-1844)

1801 England

‘The total pressure of a mixture of gases is the sum of the partial pressures exerted by each of the gases in the mixture’

Partial pressures of gases:
Dalton stated that the pressure of a mixture of gases is equal to the sum of the pressures of the gases in the mixture. On heating gases they expand and he realised that each gas acts independently of the other.

Each gas in a mixture of gases exerts a pressure, which is equal to the pressure it would exert if it were present alone in the container; this pressure is called partial pressure.

Dalton’s law of partial pressures contributed to the development of the kinetic theory of gases.

His meteorological observations confirmed the cause of rain to be a fall in temperature, not pressure and he discovered the ‘dew point’ and that the behaviour of water vapour is consistent with that of other gases.

He showed that a gas could dissolve in water or diffuse through solid objects.

Graph demonstrating the varying solubility of gases

The varying solubility of gases

Further to this, his experiments on determining the solubility of gases in water, which, unexpectedly for Dalton, showed that each gas differed in its solubility, led him to speculate that perhaps the gases were composed of different ‘atoms’, or indivisible particles, which each had different masses.
On further examination of his thesis, he realised that not only would it explain the different solubility of gases in water, but would also account for the ‘conservation of mass’ observed during chemical reactions – as well as the combinations into which elements apparently entered when forming compounds – because the atoms were simply ‘rearranging’ themselves and not being created or destroyed.

In his experiments, he observed that pure oxygen will not absorb as much water vapour as pure nitrogen – his conclusion was that oxygen atoms were bigger and heavier than nitrogen atoms.

‘ Why does not water admit its bulk of every kind of gas alike? …. I am nearly persuaded that the circumstance depends on the weight and number of the ultimate particles of the several gases ’

In a paper read to the Manchester Society on 21 October 1803, Dalton went further,

‘ An inquiry into the relative weight of the ultimate particles of bodies is a subject as far as I know, entirely new; I have lately been prosecuting this enquiry with remarkable success ’

Dalton described how he had arrived at different weights for the basic units of each elemental gas – in other words the weight of their atoms, or atomic weight.

Dalton had noticed that when elements combine to make a compound, they always did so in fixed proportions and went on to argue that the atoms of each element combined to make compounds in very simple ratios, and so the weight of each atom could be worked out by the weight of each element involved in a compound – the idea of the Law of Multiple Proportions.

When oxygen and hydrogen combined to make water, 8 grammes of oxygen was used for every 1 gramme of hydrogen. If oxygen consisted of large numbers of identical oxygen atoms and hydrogen large numbers of hydrogen atoms, all identical, and the formation of water from oxygen and hydrogen involved the two kinds of atoms colliding and sticking to make large numbers of particles of water (molecules) – then as water has an identity as distinctive as either hydrogen or oxygen, it followed that water molecules are all identical, made of a fixed number of oxygen atoms and a fixed number of hydrogen atoms.

Dalton realised that hydrogen was the lightest gas, and so he assigned it an atomic weight of 1. Because of the weight of oxygen that combined with hydrogen in water, he first assigned oxygen an atomic weight of 8.

There was a basic flaw in Dalton’s method, because he did not realise that atoms of the same element can combine. He assumed that a compound of atoms, a molecule, had only one atom of each element. It was not until Italian scientist AMADEO AVOGADRO’s idea of using molecular proportions was introduced that he would be able to calculate atomic weights correctly.

In his book of 1808, ‘A New System of Chemical Philosophy’ he summarised his beliefs based on key principles: atoms of the same element are identical; distinct elements have distinct atoms; atoms are neither created nor destroyed; everything is made up of atoms; a chemical change is simply the reshuffling of atoms; and compounds are made up of atoms from the relevant elements. He published a table of known atoms and their weights, (although some of these were slightly wrong), based on hydrogen having a mass of one.

Nevertheless, the basic idea of Dalton’s atomic theory – that each element has its own unique sized atoms – has proved to be resoundingly correct.

If oxygen atoms all had a certain weight which is unique to oxygen and hydrogen atoms all had a certain weight that was unique to hydrogen, then a fixed number of oxygen atoms and a fixed number of hydrogen atoms combined to form a fixed weight of water molecules. Each water molecule must therefore contain the same weight of oxygen atoms relative to hydrogen atoms.

Here then is the reason for the ‘law of fixed proportions’. It is irrelevant how much water is involved – the same factors always hold – the oxygen atoms in a single water molecule weigh 8 times as much as the hydrogen atoms.

Dalton wrongly assumed that elements would combine in one-to-one ratios as a base principle, only converting into ‘multiple proportions’ (for example from carbon monoxide, CO, to carbon dioxide, CO2) under certain conditions. Each water molecule (H2O) actually contains two atoms of hydrogen and one atom of oxygen. An oxygen atom is actually 16 times as heavy as a hydrogen atom. This does not affect Dalton’s reasoning.

The law of fixed proportions holds because a compound consists of a large number of identical molecules, each made of a fixed number of atoms of each component element.

Although the debate over the validity of Dalton’s thesis continued for decades, the foundation for the study of modern atomic theory had been laid and with ongoing refinement was gradually accepted.

A_New_System_of_Chemical_Philosophy - DALTON's original outline

A_New_System_of_Chemical_Philosophy

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE ATOMTHE ATOM

Related articles

<< top of page

LUKE HOWARD (1772-1864)

1802 – England

‘All types of clouds can be categorised into three basic families’

luke howard cloud chart

  • High clouds (their bases above 6km) – CIRRUS (hair-like)

  • a. Cirrus
  • b. Cirrocumulus
  • c. Cirrostratus

 

  • Middle clouds (between 2 and 6km) – CUMULUS (puffs)

Nimbostratus cloud type

Nimbostratus

 

    • Low clouds (below 2km) – STRATUS (layers)

  • a. Stratocumulus
  • b. Stratus
  • c. Cumulus

 

Intermediate and compound types are cumulocirrostratus or nimbus (the rain cloud).

Clouds that stretch through the three altitude bands are cumulonimbus.

Portrait of Luke Howard

Wikipedia-logo © (link to wikipedia)

logo of and link to The Royal Meteorological Society

NEXT buttonTIMELINE

WILLIAM PROUT (1785-1850)

1815 – UK

‘Atoms are not the smallest thing’

After ANTOINE LAVOISIER had compiled his list of the then known elements, another 32 were added in the years following his death. Fifty kinds of fundamental building blocks for matter seemed excessive. In 1815 Prout, using AVOGADRO’s method of comparing the relative densities and weights of gases, proposed that all atoms appeared to have weights that were exact multiples of the weight of the lightest atom, hydrogen, and that the different atomic weights of elements are whole-number multiples of the atomic weight of hydrogen (Prout’s hypothesis).

Portreait of William Prout (c) The University of Edinburgh Fine Art Collection; Supplied by The Public Catalogue Foundation

WILLIAM PROUT

He took this as proof that all atoms were actually made from hydrogen atoms and the idea was adopted as atomic theory and used for later investigations of atomic weights and the classification of the elements.

If all atoms are made from atoms of hydrogen, then it could be possible to transform an atom of one element into an atom of another.
If atoms had been assembled from other things, then they themselves could not be the smallest things in creation.

Apart from the method of weighing atoms being controversial, there are exceptions to the rule. Chlorine is 35.5 times as heavy as hydrogen.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

NEXT buttonTHE ATOM

MICHAEL FARADAY (1791-1869)

1831 – England

‘A changing magnetic field around a conductor produces an electric current in the conductor. The size of the voltage is proportional to the rate of change of the magnetic field’

portrait drawing of MICHAEL FARADAY English chemist and physicist (British Library) (1791-1867)

This phenomenon is called ‘electromagnetic induction’ and the current produced ‘induced current’. Induction is the basis of the electric generator and motor.

Faraday developed HANS CHRISTIAN OERSTED’s 1820 discovery that electric current could deflect a compass needle. In his experiment Faraday wrapped two coils of insulated wire around opposite sides of an iron ring. One coil was connected to a battery, the other to a wire under which lay a magnetic compass needle. He anticipated that if he passed a current through the first wire it would establish a field in the ring that would induce a current in the second wire. He observed no effect when the current was steady but when he turned the current on and off he noticed the needle moving. He surmised that whenever the current in the first coil changed, current was induced in the second. To test this concept he slipped a magnet in and out of a coil of wire. While the magnet was moving the compass needle registered a current, as he pushed it in it moved one way, as he pulled it out the needle moved in the opposite direction. This was the first production of electricity by non-chemical means.

In 1831, by rotating a copper disc between the poles of a magnet, Faraday was able to produce a steady electric current. This was the world’s first dynamo.

NEWTON, with his concept of gravity, had introduced the idea of an invisible force that exerted its effect through empty space, but the idea of ‘action-at-a-distance’ was rejected by an increasing number of scientists in the early nineteenth century. By 1830, THOMAS YOUNG and AUGUSTIN FRESNEL had shown that light did not travel as particles, as Newton had said, but as waves or vibrations. But if this was so, what was vibrating? To answer this, scientists came up with the idea of a weightless matter, or ‘aether’.

Faraday had rejected the concept of electricity as a ‘fluid’ and instead visualised its ‘fields’ with lines of force at their edges – the lines of force demonstrated by the pattern of iron fillings around a magnet. This meant that action at a distance simply did not happen, but things moved only when they encountered these lines of force. He believed that magnetism was also induced by fields of force and that it could interrelate with electricity because the respective fields cut across each other. Proving this to be true by producing an electric current via magnetism, Faraday had demonstrated electromagnetic induction.

When Faraday was discovering electromagnetic induction he did so in the guise of a natural philosopher. Physics, as a branch of science, was yet to be given a name.

The Russian physicist HEINRICH LENZ (1804- 65) extended Faraday’s work when in 1833 he suggested that ‘the changing magnetic field surrounding a conductor gives rise to an electric current whose own magnetic field tends to oppose it.’ This is now known as Lenz’s law. This law is in fact LE CHATELIER‘s principle when applied to the interactions of currents and magnetic fields.

Fluctuating_Electromagnetic_Fields_and_EM_Waves

Fluctuating Electromagnetic Fields and EM Waves

It took a Scottish mathematician by the name of JAMES CLERK MAXWELL to provide a mathematical interpretation of Faraday’s work on electromagnetism.

Describing the complex interplay of electric and magnetic fields, he was able to conclude mathematically that electromagnetic waves move at the speed of light and that light is just one form of electromagnetic wave.
This led to the understanding of light and radiant heat as moving variations in electromagnetic fields. These moving fields have become known collectively as radiation.

Faraday continued to investigate the idea that the natural forces of electricity, magnetism, light and even gravity are somehow ‘united’, and to develop the idea of fields of force. He focused on how light and gravity relate to electromagnetism.
After conducting experiments using transparent substances, he tried a piece of heavy lead glass, which led to the discovery of the ‘Faraday Effect’ in 1845 and proved that polarised light may be affected by a magnet. This opened the way for enquiries into the complete spectrum of electromagnetic radiation.

In 1888 the German physicist HEINRICH HERTZ confirmed the existence of electromagnetic waves – in this case radio waves – traveling at the speed of light.

The unit of capacitance, farad (F) is named in honour of Faraday.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

Faraday Lecture -‘The chemical history of a candle’
Faraday as a discoverer

<< top of page

THOMAS GRAHAM (1805- 69)

1833 – UK

‘Under the same conditions, the rate of diffusion of a gas is inversely proportional to the square root of its density’

For example, hydrogen diffuses four times as fast as oxygen under the same conditions of temperature and pressure.

Gases have no fixed volume; they expand to fill the entire volume of their container. This spreading of gas particles is called diffusion. The lightest gases diffuse most rapidly.

Graham is referred to as the father of colloid chemistry. In 1854 he invented the process of dialysis, which is based on the principle that some material will diffuse across a semi-permeable membrane and some material will not.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

CHARLES BABBAGE (1791-1871) ADA LOVELACE (1815- 52)

1834 – England

‘A machine which had a separate store for holding numbers (memory) and a ‘mill’ for working on them (arithmetic unit). The machine used a punched card system for specifying the sequence of instructions (input) and for obtaining results (output)’

Photograph of Charles Babbage seated ©

BABBAGE

In 1823 the mathematician and inventor Babbage was driven to attempt to build a mechanical solution to the alternative of books of mathematical tables written by teams of number crunchers to help with complicated calculations. Due to human error they were inevitably prone to mistakes. Babbage was a champion of machines and the scientific approach – he believed that if a mechanical solution could be devised then accuracy would always be assured.

Babbage designed three difference engines – mechanical devices that would compute and print mathematical and navigational tables – but never built one.

The machines were designed for mathematical calculations only.

Each number in the difference engine was represented by a column of cogwheels, and each cogwheel was marked with digits from 0 to 9. A number was set by turning the cogwheels in the column to show the right digit on each. The working model had seven number columns, each of sixteen digit cogwheels or digits. Babbage separated out the addition process from the ‘carry over’ process. The ‘mill’ (central processing unit) performed various arithmetical operations, the ‘store’ (memory) held numbers. Results from the mill were returned to the store after processing.

He also designed an analytical engine, the first programmable computer. It was much more than a calculator, rather an all-purpose computing machine. His design envisaged ‘programs’ written using loops of punched cards inspired by the Jacquard Loom. It included a reader able to process the instructions they contained, a ‘memory’, which could store the results, ‘sequential control’, and other logical features that would become components of twentieth century computers.

Drawing said to be of Ada Lovelace ©

ADA LOVELACE

‘It has no pretensions whatever to originate anything, but it can do whatever we know how to order it to perform’ wrote Lovelace about the analytical engine. Lovelace, a mathematician, is acknowledged by many as the world’s first computer programmer. Daughter of the poet Lord Byron, Lovelace worked closely with Babbage in writing instructions for his difference and analytical engines. Her writings provide the first descriptions of programming techniques. She died of cancer aged 36.

The public perception was of a ‘white elephant’. The Prime Minister Robert Peel is said to have commented that perhaps Babbage’s machine ‘should be used to calculate the time at which it would be of any use’.

Although Babbage prepared detailed drawings for thousands of parts, only a few parts were built. His project was ahead of its time and Victorian technology could not provide the precisely machined components required.

The need to develop technology as he went along meant that progress was slow and after ten years only half the parts had been made. Human computers and printed tables remained a cheaper, more practical option. One spin-off from the project, however, was the development of the first standardized screw system by Joseph Whitworth, which revolutionised engineering.

 Photograph of the internal gears of a mechanism described as the Babbage Engine ©©

BABBAGE ENGINE

In 1991, the two-hundredth anniversary of Babbage’s birth, Doran Swade and his team at the British Science museum built the difference engine number 2 (designed between 1847 and 1849). The calculation section of the engine weighs 2.6 tonnes and consists of 2400 parts.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCOMPUTERS

JAMES PRESCOTT JOULE (1818- 89)

1843 – England

‘A given amount of work produces a specific amount of heat’

4.18 joules of work is equivalent to one calorie of heat.

In 1798 COUNT RUMFORD suggested that mechanical work could be converted into heat. This idea was pursued by Joule who conducted thousands of experiments to determine how much heat could be obtained from a given amount of work.

Even in the nineteenth century, scientists did not fully understand the properties of heat. The common belief held that it was some form of transient fluid – retained and released by matter – called CALORIC. Gradually, the idea that it was another form of energy, expressed as the movement of molecules gained ground.
Heat is now regarded as a mode of transfer of energy – the transfer of energy by virtue of a temperature difference. Heat is the name of a process, not that of an entity.

Joule began his experiments by examining the relationship between electric current and resistance in the wire through which it passed, in terms of the amount of heat given off. This led to the formulation of Joule’s ideas in the 1840s, which mathematically determined the link.

Joule is remembered for his description of the conversion of electrical energy into heat; which states that the heat (Q) produced when an electric current (I) flows through a resistance (R) for a time (t) is given by Q=I2Rt

Its importance was that it undermined the concept of ‘caloric’ as it effectively determined that one form of energy was transforming itself into another – electrical energy to heat energy. Joule proved that heat could be produced from many different types of energy, including mechanical energy.

john collier portrait of james prescott joule (1200 x 1600)

JAMES JOULE

The apparatus pictured was used by James Joule to demonstrate equivalence of mechanical work and heat. He calculated the work done by the pull of gravity on the weight. That pull turned the paddle wheels, which mixed the water in the insulated container. The water was warmed by the mixing, showing that heat = work

Calorimeter used by Joule in his 1876 determination of the mechanical equivalent of heat.

Joule was the son of a brewer and all his experiments on the mechanical equivalent of heat depended upon his ability to measure extremely slight increases in temperature, using the sensitive thermometers available to him at the brewery. He formulated a value for the work required to produce a unit of heat. Performing an improved version of Count Rumford’s experiment, he used weights on a pulley to turn a paddle wheel immersed in water. The friction between the water and the paddle wheel caused the temperature of the water to rise slightly. The amount of work could be measured from the weights and the distance they fell, the heat produced could be measured by the rise in temperature.

Joule went on to study the role of heat and movement in gases and subsequently with WILLIAM THOMSON, who later became Lord Kelvin, described what became known as the ‘Joule-Thomson effect’ (1852-9). This demonstrated how most gases lose temperature on expansion due to work being done in pulling the molecules apart.

Thomson thought, as CARNOT had, that heat IN equals heat OUT during a steam engine’s cycle. Joule convinced him he was wrong.

The essential correctness of Carnot’s insight is that the work performed in a cycle divided by heat input depends only on the temperature of the source and that of the sink.

Synthesising Joule’s results with Carnot’s ideas, it became clear that a generic steam engine’s efficiency – work output divided by heat input – differed from one (100%) by an amount that could be expressed either as heat OUT at the sink divided by heat IN at the source, or alternatively as temperature of the sink divided by temperature of the source. Carnot’s insight that the efficiency of the engine depends on the temperature difference was correct. Temperature has to be measured using the right scale. The correct one had been hinted at by DALTON and GAY-LUSSAC’s experiments, in which true zero was -273degrees Celsius.

A perfect cyclical heat engine with a source at 100degrees Celsius and a sink at 7degrees has an efficiency of 1 – 280/373. The only way for the efficiency to equal 100% – for the machine to be a perfect transformer of heat into mechanical energy – is for the sink to be at absolute zero temperature.

Joule’s work helped in determining the first law of thermodynamics; the principle of the conservation of energy. This was a natural extension of his work on the ability of energy to transform from one type to another.

Joule contended that the natural world has a fixed amount of energy which is never added to nor destroyed, but which just changes form.

The SI unit of work and energy is named the joule (J)

link to James Joule - Manchester Museum of Science & Industry

Manchester Museum of Science & Industry

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

 

HEATHEAT

Related articles

<< top of page

WILLIAM THOMSON (known as LORD KELVIN) (1824-1907)

1848 – Scotland

‘Molecular motion (or heat) approaches zero at temperatures approaching -273.15 degrees C’

Photo portrait of WILLIAM THOMSON (known as LORD KELVIN) ©

LORD KELVIN

This temperature is known as absolute zero. It is the theoretical lowest limit of temperature. Like the speed of light, absolute zero can be approached closely but cannot be reached; as to actually reach it an infinite amount of energy is required.

The temperature scale based on absolute zero is the kelvin scale (kelvin, symbol K without the degree sign). One kelvin degree equals one celsius degree.

The energy of a body at absolute zero is called ‘zero-point energy’. The twentieth century model states that atomic particles can exist only at certain energy levels; the lowest energy level is called the ground state and all higher levels are called excited states. At absolute zero all particles are in the ground state.

Thomson, together with JOULE, discovered the effect whereby most gases fall in temperature on expansion due to work taking place to pull apart the molecules. He independently enunciated and publicised the second law of thermodynamics describing the one-way spontaneous flow of heat – from a hotter body to a colder one. The German RUDOLPH CLAUSIUS also arrived at the same conclusion during the same period.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

EDWARD FRANKLAND (1825- 99)

1852 – England

‘The capacity of a given element to combine with other elements to form compounds is determined by the number of chemical bonds that element can form with other elements’

This ‘combining power’ is now termed valency or valence.

Photo portrait of EDWARD FRANKLAND ©

EDWARD FRANKLAND

Valency is the number of electrons an atom of an element must lose or gain, either completely or by sharing, in order to form a compound. This leaves the atom with the stable electronic configuration of a noble gas (that is a completely full outer shell).
For example, in H2O, hydrogen has a valency of +1 (H+) and Oxygen -2 (O-2). Two hydrogen atoms lose one electron each; one oxygen atom gains these two electrons.

Every atom has a fixed number of bonds that it can form, and to be stable all of these must be employed. If a hydrogen atom bonds to another hydrogen atom, then the bonds on each atom will be fully used in forming H2, a molecule of hydrogen. The same can occur between two atoms of oxygen.
Alternatively, the two bonds on oxygen could be occupied by the bonds on two hydrogen atoms, forming water, H2O.
Frankland understood that only molecules in which atoms had all of their bonds occupied were stable. Most elements have a fixed valency, although some have more than one. The numerical values of valences represent the charge on the ion.

Lone pair shapes

Lone pair shapes

The concept of valence was further developed by FRIEDRICH AUGUST KEKULE who decided that the valence of carbon must be four which allowed carbon to form into chains of atoms or link into closed, six-atom rings. In the simplest such molecule, three of each carbon’s bonds are used to keep the ring together and the remaining bond on each carbon binds to a hydrogen atom. The resulting molecule of benzene contains six atoms of carbon and six atoms of hydrogen.

(image source)

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

<< top of page

GEORGE BOOLE (1815- 64)

1854 – England

‘Logical operations can be expressed in mathematical symbols rather than words and can be solved in a manner similar to ordinary algebra’

Boole’s reasoning founded a new branch of mathematics. Boolean logic allows two or more results to be combined into a single outcome. This lies at the centre of microelectronics.

picture of mathematician George Boole

GEORGE BOOLE

Boolean algebra has three main logical operations: NOT, AND, OR.
In NOT, for example, output is always the reverse of input. Thus NOT changes 1 to 0 and 0 to 1.

Boole’s first book ‘Mathematical Analysis of Logic’ was published in 1847 and presented the idea that logic was better handled by mathematics than metaphysics. His masterpiece ‘An Investigation into the Laws of Thought’ which laid the foundations of Boolean algebra was published in 1854.

Unhindered by previously determined systems of logic, Boole argued there was a close analogy between algebraic symbols and symbols that represent logical interactions. He also showed that you could separate symbols of quality from those of operation.

His system of analysis allowed processes to be broken up into a series of individual small steps, each involving some proposition that is either true or false.
At its simplest, take two proposals at a time and link them with an operator. By adding many steps, Boolean algebra can form complex decision trees that produce logical outcomes from a series of previously unrelated inputs.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCOMPUTERS

CHARLES LYELL (1787-1875)

1850 – UK

‘An Attempt to explain the Former Changes of the Earth’s Surface by Reference to Causes Now in Operation’

Portrait of CHARLES LYELL

At the start of the nineteenth century, most people believed that a few major events had shaped the Earth, one of which was Noah’s great biblical flood. In between these catastrophic events the Earth had remained unchanged.

Charles Lyell replaced catastrophe theory with uniformitarianism, which proposed that the Earth changed gradually as constantly present forces acted upon it. He attributed ages to rock strata, by looking at the fossils they contained. This introduced a way of studying the Earth and led to modern geology. Lyell started a chain of thought that has now generated a complex understanding of the Earth’s history, allowing it to be divided into discrete eons, eras, periods and epochs.

There is evidence that Darwin was influenced by Lyell, although Lyell was deeply troubled by Darwin’s concept of natural selection. Darwin wrote “The greatest merit of the Principles (of Geology) was that it altered the whole tone of one’s mind, and therefore that, when seeing a thing never seen by Lyell, one yet saw it through his eyes.”

Lyell believed that geological, and therefore biological, history was cyclical. While Lyell destroyed one major dogma, his adherence to other ideas prevented geology moving forward.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

Related sites

Geological evolution – Charles Lyell