THOMAS NEWCOMEN (1663-1729)

1712 – England

‘Uses the property of condensing steam to create a partial vacuüm in a cylinder and therefore pull a piston. The system was highly inefficient but was used to pump water from mines’

Today, the credit for the steam engine is usually given to James Watt, while the name Thomas Newcomen remains shrouded in obscurity.

The design of his low-pressure steam engine involved heating water underneath a large piston that was encased in a cylinder.

Steam that was released as a result of the heating forced the piston upwards. A jet of water was then released from a tank above the piston. The sudden cooling of the steam made it condense, creating a partial vacuüm which atmospheric pressure then pushed down on, forcing the piston downwards again. The piston was attached to a two-headed lever, the other side of which was attached to a pump in the mineshaft. As it moved up and down, the lever moved likewise and a pumping motion was created in the shaft, which could be used to eject floodwater.

The first engine could remove about 120 gallons per minute, completing about twelve strokes in that time, and had the equivalent of about 5.5 horsepower. Even though the engine was still not particularly powerful, was hugely inefficient to run, and burnt huge amounts of coal, it would work reliably 24-hours a day.

The steam engine originally developed by Newcomen for work in the mines was quickly developed by engineers like JAMES WATT and RICHARD TREVITHICK (1771-1833) into the steam locomotive.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

JAMES WATT (1736-1819)

1765 – Glasgow, Lanarkshire, UK

‘Steam engine’

Watt’s steam engine was the driving force behind the industrial revolution and his development of the rotary engine in 1781 brought mechanisation to several industries such as weaving, spinning and transportation.

Portrait of JAMES WATT who developed the steam engine ©

JAMES WATT

Although THOMAS NEWCOMEN had developed the steam engine before Watt was even born, Newcomen’s machines had been confined to the world of mining.

In 1764, when Watt was asked to repair a scale model of Newcomen’s engine he noted its huge inefficiency. The heating and cooling of the cylinder with every stroke wasted huge amounts of fuel; and wasted time in bringing the cylinder back up to steam producing temperature, which limited the frequency of strokes. He realised that the key to improved efficiency lay in condensing the steam in a separate container – thereby allowing the cylinder and piston to remain always hot. Watt continued to improve his steam engine and developed a way to make it work with a circular, rotary motion. Another of his improvements was the production of steam under pressure, thus increasing the temperature gap between source and sink and raising the efficiency in a manner later described by SADI CARNOT and elucidated by JAMES JOULE.

Richard_Arkwright_by_Mather_Brown_1790

RICHARD ARKWRIGHT

RICHARD ARKWRIGHT was the first to realise the engine could be used to spin cotton, and later in weaving. Flour and paper mills were other early adopters, and in 1788 steam power was used to paddle marine transportation. In the same year, Watt developed the ‘centrifugal governor’ to regulate the speed of the engine and to keep it constant.

diagram of the Watt 10hp engine

Watt 10hp engine

Watt was the first to coin the term ‘horsepower’, which he used when comparing how many horses it would require to provide the same pull as one of his machines. In 1882 the British Association named the ‘watt’ unit of power in his honour.

Wikipedia-logo © (link to wikipedia)

HENRY CAVENDISH (1731-1810)TIMELINE

HEATHEAT