1600 – England

‘Gilbert’s principal area of study related to magnetism, however, his method of enquiry is equally significant’

portrait of WILLIAM GILBERT ©


Gilbert rejected the scholastics’ approach to science, preferring the experimental method, which he applied to the Earth’s magnetic properties.
He carried out some of the first systematic studies of the lodestone in Europe and showed that the Earth acts as a bar magnet with magnetic poles.

His celebrated text, ‘De magnete, magnetisque corporibus, et de magno magnete tellure‘ (On the Magnetic, Magnetic Bodies and the Great Magnet Earth – 1600) is considered to be one of the first truly scientific texts.
Gilbert received his medical training in Cambridge and practiced as a physician in London. He became president of the College of Physicians and was physician to Queen Elizabeth I.

In the time of Elizabeth I and Shakespeare, England was still largely a place of superstition and religious fervor. Gilbert concurred with Copernicus, a potentially dangerous sentiment in an era when elsewhere in Europe others such as Giordano Bruno and later GALILEO were being persecuted (and in the case of Bruno, executed) for sharing the same opinion.

Magnetism was to cast its influence in the eighteenth century, displayed through the electric fluid of GALVANI and VOLTA

He distinguished the properties of magnetism from the attractive effect produced by friction with amber. In so doing he introduced the term that was to become electricity.
He introduced a number of expressions to the English language including: magnetic pole, electric force and electric attraction.
A term of magneto motive force, the gilbert, is named after him.

Gilbert and others postulated that magnetism is the force holding the planets in their orbits.

Wikipedia-logo © (link to wikipedia)



BLAISE PASCAL (1623- 62)

1647 – France



‘When pressure is applied anywhere to an enclosed fluid, it is transmitted uniformly in all directions’

EVANGELISTA TORICELLI (1608-47) had argued that air pressure falls at higher altitudes.

Using a mercury barometer, Pascal proved this on the summit of the 1200m high Puy de Dome in 1647. His studies in this area led to the development of PASCAL’S PRINCIPLE, the law that has practical applications in devices such as the car jack and hydraulic brakes. This is because the small force created by moving a lever such as the jacking handle in a sizable sweep equates to a large amount of pressure sufficient to move the jack head a few centimetres.
The unit of pressure is now termed the pascal.

‘The study of the likelihood of an event’

Together with PIERRE DE FERMAT, Pascal developed the theory of probabilities (1654) using the now famous PASCAL’S TRIANGLE.

Chance is something that happens in an unpredictable way. Probability is the mathematical concept that deals with the chances of an event happening.

Probability theory can help you understand everything from your chances of winning a lottery to your chances of being struck by lightning. You can find the probability of an event by simply dividing the number of ways the event can happen by the total number of possible outcomes.
The probability of drawing an ace from a full pack of cards is 4/52 or 0.077.

Probability ranges from 1 (100%) – Absolutely certain, through Very Likely 0.9 (90%) and Quite Likely 0.7 (70%), Evens (Equally Likely) 0.5 (50%), Not Likely 0.3 (30%) and Not Very Likely 0.2 (20%), to Never – Probability 0 (0%).

Picture of the 'Pascaline'. The French mathematician Blaise Pascal invented the a mechanical calculation machine. He called it the Pascaline. The Pascaline was made out of clock gears and levers and could solve basic mathematical problems like addition and subtraction.


The computer language Pascal is named in recognition of his invention in 1644 of a mechanical calculating machine that could add and subtract.


Like many of his contemporaries, Pascal did not separate philosophy from science; in his book ‘Pensees’ he applies his mathematical probability theory to the problem of the existence of God. In the absence of evidence for or against God’s existence, says Pascal, the wise man will choose to believe, since if he is correct he will gain his reward, and if he is incorrect he stands to lose nothing.

Wikipedia-logo © (link to wikipedia)




1742 – Sweden

‘The temperature difference between the freezing point and the boiling point of water is a hundred degrees’

portrait of ANDERS CELSIUS (1701-1744) ©


The scale was called centigrade but was renamed Celsius in 1969

In the fahrenheit scale introduced by the German-Dutch physicist DANIEL GABRIEL FAHRENHEIT the freezing point of water is set at 32 degrees and the boiling point at 212 degrees. Fahrenheit’s scale has been superseded by the metric Celsius scale, with water freezing at 0degrees C and boiling at 100degrees C

A conversion can be made from Fahrenheit to degrees Celsius by subtracting thirty-two and multiplying this figure by five and dividing by nine.

The kelvin scale is preferred

Wikipedia-logo © (link to wikipedia)




1785 – France

‘The force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of the distance between them’

The region around a charged object where it exerts a force is called its electric field. Another charged object placed in this field will have a force exerted on it. Coulomb’s rule is used to calculate this force.

Coulomb, a French physicist, made a detailed study of electrical attractions and repulsions between various charged bodies and concluded that electrical forces follow the same type of law as gravitation. Coulomb found a similar principle linking the relationship of magnetic forces. He believed electricity and magnetism, however, to be two separate ‘fluids’.
It was left to HANS CHRISTIAN OERSTED, ANDRE-MARIE AMPERE and MICHAEL FARADAY to enunciate the phenomenon of electromagnetism.

The SI unit of electric charge, coulomb (C), one unit of which is shifted when a current of one ampere flows for one second, is named in his honour.

He also articulated Coulomb’s rule of friction, which outlines a proportional relationship between friction and pressure.

Wikipedia-logo © (link to wikipedia)




1827 – France

‘Two current-carrying wires attract each other if their currents are in the same direction, but repel each other if their currents are opposite. The force of attraction or repulsion (magnetic force) is directly proportional to the product of the strengths of the currents and inversely proportional to the square of the distance between them’

portrait of ANDRE AMPERE ©


Another addition to the succession of ‘inverse-square’ laws begun with NEWTON’s law of universal gravitation.
Ampere had noted that two magnets could affect each other and wondered, given the similarities between electricity and magnetism, what effect two currents would have upon each other. Beginning with electricity run in two parallel wires, he observed that if the currents ran in the same direction, the wires were attracted to each other and if they ran in opposite directions they were repelled.

He experimented with other shapes of wires and generalised that the magnetic effect produced by passing a current in an electric wire is the result of the circular motion of that current. The effect is increased when the wire is coiled. When a bar of soft iron is placed in the coil it becomes a magnet. This is the solenoid, used in devices where mechanical motion is required.

Ampere exploited OERSTED’s work, devising a galvanometer which measured electric current flow via the degree of deflection upon its magnetic needle.

He attempted to interpret all his results mathematically in a bid to find an encompassing explanation for what later became referred to as electromagnetism (Ampere had at that time christened it electrodynamics), resulting in his 1827 definition.

Ampere’s name is commemorated in the SI unit of electric current, the ampere.

Wikipedia-logo © (link to wikipedia)




1843 – England

‘A given amount of work produces a specific amount of heat’

4.18 joules of work is equivalent to one calorie of heat.

In 1798 COUNT RUMFORD suggested that mechanical work could be converted into heat. This idea was pursued by Joule who conducted thousands of experiments to determine how much heat could be obtained from a given amount of work.

Even in the nineteenth century, scientists did not fully understand the properties of heat. The common belief held that it was some form of transient fluid – retained and released by matter – called CALORIC. Gradually, the idea that it was another form of energy, expressed as the movement of molecules gained ground.
Heat is now regarded as a mode of transfer of energy – the transfer of energy by virtue of a temperature difference. Heat is the name of a process, not that of an entity.

Joule began his experiments by examining the relationship between electric current and resistance in the wire through which it passed, in terms of the amount of heat given off. This led to the formulation of Joule’s ideas in the 1840s, which mathematically determined the link.

Joule is remembered for his description of the conversion of electrical energy into heat; which states that the heat (Q) produced when an electric current (I) flows through a resistance (R) for a time (t) is given by Q=I2Rt

Its importance was that it undermined the concept of ‘caloric’ as it effectively determined that one form of energy was transforming itself into another – electrical energy to heat energy. Joule proved that heat could be produced from many different types of energy, including mechanical energy.

john collier portrait of james prescott joule (1200 x 1600)


The apparatus pictured was used by James Joule to demonstrate equivalence of mechanical work and heat. He calculated the work done by the pull of gravity on the weight. That pull turned the paddle wheels, which mixed the water in the insulated container. The water was warmed by the mixing, showing that heat = work

Calorimeter used by Joule in his 1876 determination of the mechanical equivalent of heat.

Joule was the son of a brewer and all his experiments on the mechanical equivalent of heat depended upon his ability to measure extremely slight increases in temperature, using the sensitive thermometers available to him at the brewery. He formulated a value for the work required to produce a unit of heat. Performing an improved version of Count Rumford’s experiment, he used weights on a pulley to turn a paddle wheel immersed in water. The friction between the water and the paddle wheel caused the temperature of the water to rise slightly. The amount of work could be measured from the weights and the distance they fell, the heat produced could be measured by the rise in temperature.

Joule went on to study the role of heat and movement in gases and subsequently with WILLIAM THOMSON, who later became Lord Kelvin, described what became known as the ‘Joule-Thomson effect’ (1852-9). This demonstrated how most gases lose temperature on expansion due to work being done in pulling the molecules apart.

Thomson thought, as CARNOT had, that heat IN equals heat OUT during a steam engine’s cycle. Joule convinced him he was wrong.

The essential correctness of Carnot’s insight is that the work performed in a cycle divided by heat input depends only on the temperature of the source and that of the sink.

Synthesising Joule’s results with Carnot’s ideas, it became clear that a generic steam engine’s efficiency – work output divided by heat input – differed from one (100%) by an amount that could be expressed either as heat OUT at the sink divided by heat IN at the source, or alternatively as temperature of the sink divided by temperature of the source. Carnot’s insight that the efficiency of the engine depends on the temperature difference was correct. Temperature has to be measured using the right scale. The correct one had been hinted at by DALTON and GAY-LUSSAC’s experiments, in which true zero was -273degrees Celsius.

A perfect cyclical heat engine with a source at 100degrees Celsius and a sink at 7degrees has an efficiency of 1 – 280/373. The only way for the efficiency to equal 100% – for the machine to be a perfect transformer of heat into mechanical energy – is for the sink to be at absolute zero temperature.

Joule’s work helped in determining the first law of thermodynamics; the principle of the conservation of energy. This was a natural extension of his work on the ability of energy to transform from one type to another.

Joule contended that the natural world has a fixed amount of energy which is never added to nor destroyed, but which just changes form.

The SI unit of work and energy is named the joule (J)

link to James Joule - Manchester Museum of Science & Industry

Manchester Museum of Science & Industry

Wikipedia-logo © (link to wikipedia)




Related articles

<< top of page