PYTHAGORAS (c.560 – c.480 BCE)

diagrammatic proof of Pythagoras' theoremSixth Century BCE – Greece

‘In a right-angled triangle, the square on the hypotenuse is the sum of the squares on the other two sides’

The Theorem may also be written as a general law:  a2 + b2 = c2  where c is the length of the hypotenuse of a right-angled triangle, and a and b the lengths of the other two sides. Pythagoras’ theorem is a starting point for trigonometry, which has many practical applications such as calculating the height of mountains and measuring distances.

c.525 BCE – Pythagoras taken prisoner by the Babylonians

c.518 BCE – establishes his own academy at Croton (now Crotone) in southern Italy

c.500 BCE – Pythagoras moves to Metapontum

Pythagoras was the first to prove the relationship between the sides of a right-angled triangle, but he did not discover it – it was known to Babylonians for nearly 1000 years before him.

His disciples, members of the semi-religious, philosophical school he founded, may have actually found many of the mathematical discoveries credited to Pythagoras. The inner circle of followers were known as mathematikoi and, unusually for the time, included women among its membership. An outer circle, the akousmatics, lived in their own homes and came in to the school by day.

Of the five key beliefs the Pythagoreans held, the idea that ‘all is number’ was dominant; the belief that reality at its fundamental level is mathematical and that all physical things like musical scales, or the spherical earth and its companions the stars and the universe, are mathematically related. Pythagoras was responsible for the widely held Greek belief that real knowledge had to be like mathematics – universal, permanent, obtained by pure thought and uncontaminated by the senses.

Because of the reverence with which the originator of the Pythagoreans was treated by his followers and biographers, it is difficult to discern legend from fact, such as the notion that he was the first to offer a three-part argument that the shape of the Earth is spherical:
The field of stars changes with the latitude of the observer; the mast of a ship comes into view before its hull as the ship approaches the shore from a distance; and the shadow of the Earth cast on the moon during a lunar eclipse is always round.

After Pythagoras, the idea of a ‘perfect’ mathematical interrelation between a globe moving in circles and the stars behaving similarly in a spherical universe inspired later Greek scholars, including ARISTOTLE, to seek and ultimately find physical and mathematical evidence to reinforce the theory of the world as an orb.

Attributed to the Pythagoreans is the discovery that simple whole number ratios of string lengths produce harmonious tones when plucked, probably the first time a physical law had been mathematically expressed.

Numerous other discoveries such as ‘the sum of a triangle’s angles is the equal to two right angles’ and ‘the sum of the interior angles in a polygon of n-sides is equal to 2n-4 right angles’ were made. They also discovered irrational numbers, from the realisation that the square root of two cannot be expressed as a perfect fraction. This was a major blow to the Pythagorean idea of perfection and according to some, attempts were made to try to conceal the discovery.

PLATONIC SOLIDS

To the Pythagoreans, the fifth polyhedron had monumental significance. Outnumbering by one the number of recognized elements, the dodecahedron was considered to represent the shape of the universe. 
A omerta, or code of silence, was imposed regarding the dodecahedron and divulging this secret to outsiders could mean a death penalty.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Advertisements

THE PLATONIC SOLIDS

The properties of solid figures have kept mathematicians occupied for centuries. Regular polyhedra are formed from regular polygons such as squares or triangles and mathematicians have failed to find any more than five of them.

the five Platonic solids - tetrahedron, cube, octahedron, dodecahedron, icosahedron

Although they were defined by Pythagoras two hundred years before Plato was born, they are known collectively as the platonic solids, named in honour of PLATO by the geometer Euclid.

“THE PLATONIC SOLIDS – The regular polyhedron is defined as a three-dimensional solid comprising regular polygons for its surfaces – and with all its surfaces, edges and vertices identical. The five regular polyhedra are the tetrahedron (four triangular faces), the cube (six square faces), the octahedron (eight triangular faces), the dodecahedron (twelve pentagonal faces) and the icosahedron (twenty triangular faces).”

Wikipedia-logo © (link to wikipedia)

NEXT buttonMAIN INDEX

Related articles

EUCLID (c.330 – c.260 BCE)

Fourth century BCE – Alexandria, Egypt

Euclid

EUCLID

  1. A straight line can be drawn between any two points

  2. A straight line can be extended indefinitely in either direction

  3. A circle can be drawn with any given centre and radius

  4. All right angles are equal

  5. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines will eventually meet (or, parallel lines never meet)

These five postulates form the basis of Euclidean geometry. Many mathematicians do not consider the fifth postulate (or parallel postulate) as a true postulate, but rather as a theorem that can be derived from the first four postulates. This ‘parallel’ axiom means that if a point lies outside a straight line, then only one straight line can be drawn through the point that never meets the other line in that plane.

The ideas of earlier Greek mathematicians, such as EUDOXUS, THEAETETUS and PYTHAGORAS are all evident, though much of the systematic proof of theories, as well as other original contributions, was Euclid’s.

The first six of his thirteen volumes were concerned with plane geometry; for example laying out the basic principles of triangles, squares, rectangles and circles; as well as outlining other mathematical cornerstones, including Eudoxus’ theory of proportion. The next four books looked at number theory, including the proof that there is an infinite number of prime numbers. The final three works focused on solid geometry.

Virtually nothing is known about Euclid’s life. He studied in Athens and then worked in Alexandria during the reign of Ptolemy I

Euclid’s approach to his writings was systematic, laying out a set of axioms (truths) at the beginning and constructing each proof of theorem that followed on the basis of proven truths that had gone before.

Elements begins with 23 definitions (such as point, line, circle and right angle), the five postulates and five ‘common notions’. From these foundations Euclid proved 465 theorems.

A postulate (or axiom) claims something is true or is the basis for an argument. A theorem is a proven position, which is a statement with logical constraints.

Euclid’s common notions are not about geometry; they are elegant assertions of logic:

  • Two things that are both equal to a third thing are also equal to each other

  • If equals are added to equals, the wholes are equal

  • If equals are subtracted from equals, the remainders are equal

  • Things that coincide with one and other are equal to one and other

  • The whole is greater than the part

One of the dilemmas that he presented was how to deal with a cone. It was known that the volume of a cone was one-third of the volume of a cylinder that had the same height and base diameter. He asked if you cut through a cone parallel to its base, would the circle formed on the top section be the same size as that on the bottom of the new, smaller cone?

If it were, then the cone would in fact be a cylinder and clearly that was not true. If they were not equal, then the surface of a cone must consist of a series of steps or indentations.

NON-EUCLIDEAN MATHEMATICS

Statue of Janus Bolyai

Janus Bolyai

The essential weakness in Euclidean mathematics lay in its treatment of two- and three- dimensional figures. This was examined in the nineteenth century by the Romanian mathematician Janus Bolyai. He attempted to prove Euclid’s parallel postulate, only to discover that it is in fact unprovable. The postulate means that only one line can be drawn parallel to another through a given point, but if space is curved and multidimensional, many other parallel lines can be drawn. Similarly the angles of a triangle drawn on the surface of a ball add up to more than 180 degrees.
CARL FRIEDRICH GAUSS was perhaps the first to ‘doubt the truth of geometry’ and began to develop a new geometry for curved and multidimensional space. The final and conclusive push came from BERNHARD RIEMANN, who developed Gauss’s ideas on the intrinsic curvature of surfaces.

Riemann argued that we should ignore Euclidean geometry and treat each surface by itself. This had a profound effect on mathematics, removing a priori reasoning and ensuring that any future investigation of the geometric nature of the universe would have to be at least in part, empirical. This provides a mechanism for examinations of multidimensional space using an adaptation of the calculus.

However, the discoveries of the last two hundred years that have shown time and space to be other than Euclidean under certain circumstances should not be seen to undermine Euclid’s achievements.

Moreover, Euclid’s method of establishing basic truths by logic, deductive reasoning, evidence and proof is so powerful that it is regarded as common sense.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE