# PIERRE DE FERMAT (1601- 65) ANDREW WILES (b.1953)

1637 – France; 1993 – USA

Fermat’s theorem proves that there are no whole-number solutions of the equation x n + y n = z n for n greater than 2

The problem is based on Pythagoras’ Theorem; in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares on the other two sides; that is x 2 + y 2 = z 2

If x and y are whole numbers then z can also be a whole number: for example 52+ 122 = 132
If the same equation is taken to a higher power than 2, such as x 3 + y 3 = z 3 then z cannot ever be a whole number.

In about 1637, Fermat wrote an equation in the margin of a book and added ‘I have discovered a truly marvelous proof, which this margin is too small to contain’. The problem now called Fermat’s Last Theorem baffled mathematicians for 356 years.

In 1993, Wiles, a professor of mathematics at Princeton University, finally proved the theorem.

Wiles, born in England, dreamed of proving the theorem ever since he read it at the age of ten in his local library. It took him years of dedicated work to prove it and the 130-page proof was published in the journal ‘Annals of Mathematics‘ in May 1995.  TIMELINE MATHEMATICS

# BLAISE PASCAL (1623- 62)

1647 – France

‘When pressure is applied anywhere to an enclosed fluid, it is transmitted uniformly in all directions’

EVANGELISTA TORICELLI (1608-47) had argued that air pressure falls at higher altitudes.

Using a mercury barometer, Pascal proved this on the summit of the 1200m high Puy de Dome in 1647. His studies in this area led to the development of PASCAL’S PRINCIPLE, the law that has practical applications in devices such as the car jack and hydraulic brakes. This is because the small force created by moving a lever such as the jacking handle in a sizable sweep equates to a large amount of pressure sufficient to move the jack head a few centimetres.
The unit of pressure is now termed the pascal.

‘The study of the likelihood of an event’

Together with PIERRE DE FERMAT, Pascal developed the theory of probabilities (1654) using the now famous PASCAL’S TRIANGLE.

Chance is something that happens in an unpredictable way. Probability is the mathematical concept that deals with the chances of an event happening.

Probability theory can help you understand everything from your chances of winning a lottery to your chances of being struck by lightning. You can find the probability of an event by simply dividing the number of ways the event can happen by the total number of possible outcomes.
The probability of drawing an ace from a full pack of cards is 4/52 or 0.077.

Probability ranges from 1 (100%) – Absolutely certain, through Very Likely 0.9 (90%) and Quite Likely 0.7 (70%), Evens (Equally Likely) 0.5 (50%), Not Likely 0.3 (30%) and Not Very Likely 0.2 (20%), to Never – Probability 0 (0%). The computer language Pascal is named in recognition of his invention in 1644 of a mechanical calculating machine that could add and subtract.

Like many of his contemporaries, Pascal did not separate philosophy from science; in his book ‘Pensees’ he applies his mathematical probability theory to the problem of the existence of God. In the absence of evidence for or against God’s existence, says Pascal, the wise man will choose to believe, since if he is correct he will gain his reward, and if he is incorrect he stands to lose nothing.  TIMELINE COMPUTERS