HANS CHRISTIAN OERSTED (1777-1851)

1820 – Denmark

‘Electric current produces a magnetic field’

drawn portrait of HANS CHRISTIAN OERSTED ©

Oersted discovered that an electric current could make the needle of a magnetic compass swivel. It was the first indication of a link between these two natural forces. Although Oersted discovered electromagnetism he did little about it. This task was left to AMPERE and FARADAY.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

 

NEXT buttonELECTRICITY

Related articles
Advertisements

HEINRICH WILHELM MATTHIAS OLBERS (1758-1840)

1823 – Germany

‘Why is the sky dark at night?’

This question puzzled astronomers for centuries and no, the answer is not because the Sun is on the other side of the planet.

Olbers pointed out that if there were an infinite number of stars evenly distributed in space, the night sky should be uniformly bright. He believed that the darkness of the night sky was due to the adsorption of light by interstellar space.

This is wrong.

Heinrich-Wilhelm-Matthias-Olbers ©

OLBERS

Olbers’ question remained a paradox until 1929 when it was discovered that the galaxies are moving away from us and the universe is expanding. The distant galaxies are moving away so fast that the intensity of light we receive from them is diminished.

diagram explaining reduced light intensity as the observer travels further from the source

What is light intensity?

In addition, this light is shifted towards the red end of the spectrum. These two effects significantly reduce the light we receive from distant galaxies, leaving only the nearby stars, which we see as points of light in a darkened sky.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE STARS

 

Related articles

JOSEF VON FRAUNHOFER (1787-1826)

1823 – Germany

‘The spectroscope’

A significant improvement on the apparatus used by Newton. Sunlight, instead of passing through a pinhole before striking a prism, is passed through a long thin slit in a metal plate. This creates a long ribbon-like spectrum, which may be scanned from end to end with a microscope.

image of the visible portion of the electromagnetic spectrum showing a series of dark fraunhofer lines

Cutting across the ribbon of rainbow colours are thin black lines. The lines are present even when a diffraction grating is used instead of a prism, proving that the lines are not produced by the material of a prism, but are inherent in sunlight.

An equivalent way of describing colours is as light waves of different sizes.
The wavelength of light is fantastically small, on average about a thousandth of a millimeter, with the wavelength of red light being about twice as long as that of blue light.

Fraunhofer’s black lines correspond to missing wavelengths of light.

By 1823 Fraunhofer had measured the positions of 574 spectral lines, labeling the most prominent ones with the letters of the alphabet. The lines labeled with the letters ‘H’ and ‘K’ correspond to light at a wavelength of 0.3968 thousandths of a millimeter and 0.3933 thousandths of a millimeter, respectively. The lines are present in the spectrum of light from stars, usually in different combinations.

Fraunhofer died early at the age of 39 and it was left to the German GUSTAV KIRCHOFF to make the breakthrough that explained their significance.

Astronomers today know the wavelengths of more than 25,000 ‘Fraunhofer lines’.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE STARS

NICOLAS SADI CARNOT (1796-1832)

1824 – France

‘The Carnot cycle is the most efficient cycle for operating a reversible heat engine’

It illustrates the principle that the efficiency of a heat engine depends on the temperature range through which it works.

The cycle has a four-stage reversible sequence:

adiabatic compression and isothermal expansion at high temperature; adiabatic expansion and isothermal compression at low temperature.

( ADIABATIC: – no heat flows into or out of a system; ISOTHERMAL: – at a constant temperature )

Carnot suggested that the puissance motrice (motive power, by which he meant work or energy) of a heat engine was derived from the fall of heat from a higher to a lower temperature.

Carnot was the first to grasp the principles that later became known as the second law of thermodynamics.

By the time of Carnot’s death it had become clear there was no such thing as a calorific fluid ; heat is a form of energy, one of many, and the sum of all forms of energy in an isolated system is conserved. This has come to be known as the first law of thermodynamics.

In the case of a steam engine, the heat taken in at the boiler is not equal to the heat removed at the condenser. The work done by the ideal engine is the difference between the two. The first modern experiment proving the first law of thermodynamics was performed by a student of John Dalton’s, JAMES JOULE.

 

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

HEATHEAT

Related sites

GEORG SIMON OHM (1789-1854)

1827 – Germany

‘The electric current in a conductor is proportional to the potential difference’

In equation form, V = IR, where V is the potential difference, I is the current and R is a constant called resistance.

greek symbol capital ohm (480 x 480)

Ohm’s law links voltage (potential difference) with current and resistance and the scientists VOLTA, AMPERE and OHM.

Ohm is now honoured by having the unit of electrical resistance named after him.
If we use units of VI and R, Ohm’s law can be written in units as:

volts = ampere × ohm

photograph of george simon ohm © + diagram of simple electric circuit

GEORG OHM


Wikipedia-logo © (link to wikipedia)

NEXT button - ANDRE MARIE AMPERE (1775-1836)TIMELINE

NEXT buttonELECTRICITY

ANDRE MARIE AMPERE (1775-1836)

1827 – France

‘Two current-carrying wires attract each other if their currents are in the same direction, but repel each other if their currents are opposite. The force of attraction or repulsion (magnetic force) is directly proportional to the product of the strengths of the currents and inversely proportional to the square of the distance between them’

portrait of ANDRE AMPERE ©

ANDRE AMPERE

Another addition to the succession of ‘inverse-square’ laws begun with NEWTON’s law of universal gravitation.
Ampere had noted that two magnets could affect each other and wondered, given the similarities between electricity and magnetism, what effect two currents would have upon each other. Beginning with electricity run in two parallel wires, he observed that if the currents ran in the same direction, the wires were attracted to each other and if they ran in opposite directions they were repelled.

He experimented with other shapes of wires and generalised that the magnetic effect produced by passing a current in an electric wire is the result of the circular motion of that current. The effect is increased when the wire is coiled. When a bar of soft iron is placed in the coil it becomes a magnet. This is the solenoid, used in devices where mechanical motion is required.

Ampere exploited OERSTED’s work, devising a galvanometer which measured electric current flow via the degree of deflection upon its magnetic needle.

He attempted to interpret all his results mathematically in a bid to find an encompassing explanation for what later became referred to as electromagnetism (Ampere had at that time christened it electrodynamics), resulting in his 1827 definition.

Ampere’s name is commemorated in the SI unit of electric current, the ampere.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

ROBERT BROWN (1773-1858)

1827 – UK

‘Tiny solid particles suspended in a fluid are in continuous random motion’

This motion is caused by constant collisions between the suspended particles and the fluid molecules.

In 1905 EINSTEIN studied Brownian motion and used it to calculate the approximate mass and size of atoms and molecules.

Robert Brown (1773-1858), British botanist. Brown is most famous for his 1827 observation of erratic motion by pollen grains in water. This was named Brownian motion.In 1877, Desaulx recognised that the motion is caused by the pollen colliding with water molecules. This meant that Brownian motion was the first directly observable evidence for the existence of molecules. Brown spent years working on plant taxonomy, establishing the classification of two major divisions of plants, the gymnosperms and the angiosperms. He also observed an essential part of living cells, which he named the nucleus (1831) &copy:

ROBERT BROWN

Brown is also remembered for discovering a small body within cells, which he named the nucleus (from the Latin for ‘little nut’). Plant cells were discovered by HOOKE.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE ATOM