ARISTOTLE (c.384 – c.322 BCE)

335 BCE – Athens

Bust of ARISTOTLE

ARISTOTLE

384 BCE – Born in the Greek colony of Stagira. The son of Nicomachus, court physician to the king of Macedonia
367 BCE – Enters Plato’s Academy in Athens
347 BCE – On Plato’s death Speusippus succeeds Plato as head of the Academy. Aristotle leaves the Academy for Lesbos
342 BCE – Becomes tutor to the young Alexander (the Great), son of Phillip of Macedon
335 BCE – Returns to Athens and founds the Lyceum
321 BCE – Accused of impiety, returns to Chalcis where he dies a year later

Aristotle reinforced the view espoused by PYTHAGORAS that the earth is spherical. The arc shaped shadow of the earth cast upon the moon during a lunar eclipse is consistent with this view. He also noted that when traveling north or south, stars ‘move’ on the horizon until some gradually disappear from view.

Proposing that there was no infinity and no void he accepted the notion of the earth at the centre of the universe, with the moon, planets, sun and stars all orbiting around it in perfect circles.
The universe existed as beautiful spheres surrounding the Earth, placed at the centre of the cosmos. This system was later refined by the Alexandrian astronomer Ptolemy and become the dominant philosophy in the Western world.

Explaining why the heavens rotate in perfect, uniform order, with none of the disturbances associated with earthly elements; he described the fifth element added to the traditional four, ‘Aether‘, as having a naturally circular motion. Everything beyond the moon was regulated by aether, explaining both its perfect movement and stability, while everything below it was subject to the laws of the four other elements.

Aristotle rejected the ideas of zero and infinity, hence he had explained away Zeno’s paradoxes – Achilles runs smoothly past the tortoise because the infinite points are simply a figment of Zeno’s imagination; infinity was just a construct of the human mind.
By rejecting zero and infinity, Aristotle denied the atomists’ idea of matter existing in an infinite vacuum, infinity and zero wrapped into one.
In contrast to the theory of atoms, like Plato, Aristotle believed that matter is composed of four elements ( Ignis, Aqua, Aer and Terra ) with differing qualities ( hot, wet, cold, dry )

[ Fire – hot + dry ; Water – cold + wet ; Air – hot + wet ; Earth – cold + dry ]

He believed that the qualities of heat, cold, wetness and dryness were the keys to transformation, each element being converted into another by changing one of these two qualities to its opposite.

Agreeing that things were composed of a single, primal substance (prote hyle) that was too remote and unknowable, he accepted EMPEDOCLES elements as intermediaries between the imponderable and the tangible world, concealing the complications behind a philosophy of matter.

The four elements always sought to return to their ‘natural place’. Thus a rock, for example, would drop to the earth as soon as any obstacles preventing it from doing so were removed – because ‘earth’ elements, being denser and heavier, would naturally seek to move downwards towards the centre of the planet. Water elements would float around the surface, air would rise above that and fire would seek to rise above them all, explaining the leaping, upward direction of flames.

Although the Aristotelian view of matter has been undermined as experiments proved that neither air nor water are indivisible; today, scientists define matter as existing in four phases, solid, liquid, gas and plasma.

MATTER (hyle); FORM (morphe); CAUSE; PURPOSE;

The place where his ideas converge with Plato’s is that for Aristotle, the pinnacle of the tower of superiority is the Good. According to Aristotle, all aims eventually lead to the Good, not necessarily of the individual but of humankind. Humans by nature are social and moral and everyone is part of a group, a family, village, town or city-state. There is no place for individualism or freethinkers, as without the happiness of the group then the individual cannot be happy.
The consequence of this emphasis on the community as opposed to the individual is hierarchy and subordination and as a result slavery was a very normal part of a well-ordered society.

  • Matter is itself only one component of the world – others being form and spirit. There are different sorts of living being in the world.
    Human beings possess immortal souls.
    He believed that there is in living creatures a fundamental vital principle, a ‘life force’, which distinguishes them from non-living material. The gods breathed this vital principle into living things, and thereby gave them their life – ( nous – spontaneous generation ).

The soul is governed by reason, spirit and appetite.
‘All human actions have one or more of these seven causes: chance, nature, compulsion, habit, reason, passion, and desire’ ( source )

  • Forms are incorporated in individual particulars as potentiality.
    All particular acorns possess the form of the potential oak tree.

Although Aristotle was a pupil at Plato’s Academy for almost twenty years, the two great thinkers were diametrically opposed on a number of subjects; he criticised Platonic forms for being impossibly transcendent and mystical.

Aristotle pursued his ideas unrestricted by Socratic theories that non-physical forms such as Truth and Beauty were the keys to understanding.

  • Four Causes – efficient, formal, material, final – (agent, form, matter, goal). – The ‘Timaeus’ – ( Plato’s work in which the chief speaker is encouraged to provide his account of the origins of the universe.)

  • ‘Action exists not in the agent but in the patient’
    To study a situation, or an action, Aristotle would categorise it into a series of subordinate and superior aims.

 

MOTION

  • Motion of Place – A to B

  • Motion of Quantity – change in amount

  • Motion of Quality – green apples turning red or from sour to sweet

 

Aristotle could explain why a rock, when thrown, would travel upwards through the air first before heading downwards, rather than straight down towards the earth. This was because the air, seeking to close the gap made by the invasion of the rock, would propel it along until it lost its horizontal speed and it tumbled to the ground.

Such notions made a lasting impact for the next two thousand years, if only by slowing down progress due to their unchallenged acceptance.

Some of Aristotle’s biology was faulty, such as defining the heart, not the brain as the seat of the mind.

 

Aristotle’s model of ‘the hydrologic cycle’ is uncannily close to the ideas we have today. The Sun’s heat changes water into air ( as defined as ‘elements’ by EMPEDOCLES ). Heat rises, so the heat in this air pulls the air up to the skies ( modern explanations of the nature of heat give a fuller understanding of the mechanisms involved ). The heat then leaves the vapour, which thus becomes progressively more watery again, and this process is marked by the formation of a cloud. The positive feedback of the increased ‘wateriness’ of the mixture in the cloud driving away its opposite ( the ‘heat’ ) and causing the cloud to become colder and shrink results in restoration of the true wateriness of the water, which falls as rain or, if the cloud is now cold enough, as hail or snow.

Aristotle was one of the first to attempt a methodical classification of animals; in ‘Generation of Animals’ he used means of reproduction to differentiate between those animals which give birth to live young and those which lay eggs, a system which is the forerunner of modern taxonomy. He noted that dolphins give birth to live young who were attached to their mothers by umbilical cords and so he classified dolphins as mammals.

Based on the Pythagorean universe, the Aristotelian cosmos had the planets moving in crystalline orbs.
Since there is no infinity, there cannot be an endless number of spheres; there must be a last one. There was no such thing as ‘beyond’ the final sphere and the universe ended with the outermost layer.
With no infinite and no void, the universe was contained within the sphere of fixed stars. The cosmos was finite in extent and entirely filled with matter.
The consequence of this line of reasoning, accounting for Aristotle’s philosophy enduring for two millennia was that this system proved the existence of God.

The heavenly spheres are slowly spinning in their places, making a divine music that suffuses the cosmos. The stationary earth cannot be the cause of that motion, so the innermost sphere must be moved by the next sphere out, which, in its turn must be moved by by its larger neighbour, and on and on. With a finite number of spheres, something must be the ultimate cause of motion of the final sphere of fixed stars. This is the Prime Mover.
Christianity came to rely on Aristotle’s view of the universe and this proof of God’s existence.
Atomism became associated with atheism.

The ideas of Aristotle were picked up by the twelfth century Andalusian philosopher Abu al-Walid Muhammad ibn Ahmed ibn Rushd (AVERROES) and were later adopted by the medieval philosopher THOMAS AQUINAS in the thirteenth century; whose concept of Natural Law is the basis of much thinking in the Christian world.

Aristotle had greater influence on medieval scholastic thought than Plato, whose rediscovery in the Italian renaissance influenced Petrarch, Erasmus, Thomas More and other scholars to question the dogmas of scholasticism.

Aristotle’s work in physics and cosmology dominated Western thought until the time of GALILEO and NEWTON, when much of it was subsequently refuted, though his work still underpins both Christian and Islāmic philosophy. His importance lies as much in his analytical method as in the conclusions he reached.

 

Aristotle expanded Plato’s concept of ‘virtue’ by dividing virtues into two groups, the 12 ‘moral’ and 9 ‘intellectual’ virtues, believing that each lay between the non-virtuous extremes of excess and deficiency.

Deficiency Virtue Excess
Cowardice Courage Rashness
Licentiousness (disregarding convention, unrestrained) Temperance (restraint or moderation) Insensibility (indifference)
Illiberality (meanness) Liberality (generosity) Prodigality (wasteful, extravagant)
Pettiness Magnificence Vulgarity
Humble-mindedness High-mindedness Vanity
Lack of ambition Proper ambition Over ambition
Irascibility (easily angered) Patience Lack of spirit
Understatement Truthfulness Boastfulness
Boorishness Wittiness Buffoonery
Cantankerousness Friendliness Obsequiousness
Shamelessness Modesty Shyness
Malicious enjoyment Righteous indignation Envy/spitefulness

His intellectual virtues consisted of :

art    scientific knowledge    prudence    intelligence    wisdom    resourcefulness    understanding    judgment    cleverness

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

THE MEDIEVAL ARAB SCIENTISTS

A great deal of what we know about the ancient world and its scientific ideas has come to us from documents which were translated from ancient Greek or other ancient languages into Arabic, and later from Arabic into European languages. The material reached the Arab world in many cases through the Roman empire in the East, Byzantium, which survived until 1453, almost a thousand years after the fall of Rome, during the period known in Europe as the Dark Ages.
During this time the consolidating influence of Islāmic religion saw Arab Muslims begin to build an empire that was to stretch across the Middle East and across North Africa into Spain. At the heart of the Islāmic world the caliphs ruled in Baghdad. Arab scientists sowed the seeds that would later be reaped in the scientific revolution of the seventeenth century, especially under the Abbasid dynasty during the caliphate of Harun al-Rashid and his son al-Mamun, and the Middle East became the intellectual hub of the World.

depiction of early islamic scholars at work at various scientific investigations

In the ninth century, at the House of Wisdom – a mixture of library, research institute and university – scholars worked to translate the great works of the GREEK thinkers. Muslim scholars of this golden age made important and original contributions to mathematics and astronomy, medicine and chemistry. They developed the ASTROLABE, which enabled astronomers to measure the position of the stars with unparalleled accuracy.Astrology & Astronomy in Iran and Ancient Mesopotamia: Astrolabe: An ancient astronomical instrument
In medicine they made the first serious studies of drugs and advanced surgery. A number of mathematicians, including Habash al-Hasib (‘he who calculates’), Abul’l-Wafa al-Buzjani, Abu Nasr al-Iraq and Ibn Yunus formulated trigonometry (including all six trig functions [ sin, cosec, cos, sec, tan, and cot ]) at a level far above that introduced by the Greek astronomer-mathematician HIPPARCHUS in the second century BCE.
It is largely through such efforts that Greek ideas were preserved through the DARK AGES.

more

Eight hundred years before COPERNICUS, a model of the solar system was advanced with the Earth as a planet orbiting the Sun along with other planets.

A few centuries later this idea fell into disfavour with the early Christian Church, which placed mankind at the centre of the universe in a geo-centric model. The alternative teaching would be deemed heresy punishable by death and it would not be until the seventeenth century that the work of GALILEO, KEPLER and NEWTON gave credence to the ideas revitalized by Copernicus in 1543.

It is worth noting that even to-day at least half the named stars in the sky bear Arabic names (Aldebaran and Algol amongst others) and many terms used in astronomy, such as Nadir and Azimuth, are originally Arabic words.

 The Ulugh Beg Observatory in Samarkand, Uzbekistan

The elaborate observatory established by the Ulugh Begg in Samarkand in the fifteenth century appeared to function with a dictum meant to challenge PTOLEMY’s geocentric picture of the universe sanctioned by the Church in Europe. Arabic scholars had access to the early teachings of ARISTARCHUS, the astronomer from Samos of the third century BCE. (referred to by Copernicus in the forward of an early draft of De Revolutionibus, although omitted from the final copy)

NEXT buttonNEXT

THE DARK AGES

THE THIRTEENTH CENTURY

Ideas on ‘impetus’ and the motion of the heavenly spheres.

Diversity of opinion on what keeps the heavenly orbs moving.

The recipe literature – craft manuals outlining recipes for manufacture of alchemical materials. For example, glass production had died out in the Latin West, but remained important in the Arab world.

ROGER BACON suggests that alchemical power can surpass nature (human artifice may exceed nature, i.e. technology), compared with Aristotle, who suggests that artifice may only mimic nature, or complete that which nature has failed to finish.

Suma Perfectionis’, Gaber – Latin Franciscan text (passed off as Arabic). Underpinned by the sulfur-mercury theory and by Aristotle’s ‘minima naturalia’ (smallest of natural things)– the idea of a minimum amount of matter to hold a form – hence a smallest particle of any given substance. This differs from atomism but the ideas were not developed by Aristotle.

Thus, in the middle ages came the belief that metals are created by the coalescence of minima of the metals.
Particles may be tightly or lightly packed (density). Matter may be contaminated.
Noble metals (gold) are tightly packed small particles, unaffected by fire or corrosion.
Lead turns to powder (oxidised) in fire as it is composed of larger, less tightly packed particles.
Sublimation is explained by smaller, lighter particles being driven upward by fire, and so on.

THE FOURTEENTH CENTURY

Texts become more secret, written in code and disguised. Latin texts are written in such a style so as to appear to be derived from ARABIC.

1317 – The Pope outlaws transmutation.

Moral questions: ‘is alchemical gold as valuable as real gold?’

Quintessences’: the refined essences of metals.

The discovery that lead cannot be turned to gold has important consequences. It is a strong indication that some substances are truly permanent and indestructible.

NEXT buttonALCHEMY

ALCHEMY

photo of an ancient document showing some of the symbols commonly used by alchemists

Alchemical symbols

Understanding of the alchemists is hampered by their predilection for making their writings incomprehensible ( instant knowledge was not to be available to the uninitiated ) and the popular view that their quest was simply to isolate the Philosophers’ Stone and to use it to transform base metals into gold. There was in fact a genuine search for mental and spiritual advance

Using a world-view totally unlike that recognised today, the alchemists’ ideas of ‘spirit’ and ‘matter’ were intermingled – the ability to use ‘spirit’ in their experiments was the difficult part.

alchemical symbol for gold

To transform copper to gold: – copper could be heated with sulphur to reduce it to its ‘basic form’ (a black mass which is in fact copper sulphide) – its ‘metallic form’ being ousted by the treatment. The idea of introducing the ‘form of gold’ to this mass by manipulating and mixing suitable quantities of spirit stymied alchemists for over fifteen centuries.

Whilst this transmutation of metals was the mainstream concern of alchemy, there emerged in the sixteenth century a school that brought the techniques and philosophies of alchemy to bear on the preparation of medicines, the main figures involved being PARACELSUS and JOHANN VAN HELMONT.

Wikipedia-logo © (link to wikipedia)

cartoon of ALCHEMISTS AT WORK

ALCHEMISTS AT WORK

THE EIGHTEENTH CENTURY

COMBUSTION and PHLOGISTON

Noticing that burning a candle in an upturned container, the open end of which is submerged in water, causes the water to rise into the container, Philon of Byzantium inferred correctly that some of the air in the container had been used up in the combustion. However, he proposed that this is because this portion of the air had been converted into ‘fire particles’, which were smaller than ‘air particles’.

In 1700 the German physician Georg Ernst Stahl (1660-1734) invoked ‘phlogiston’ to explain what happens when things burn. He suggested that a burning substance was losing an undetectable elementary principle analogous to the ‘sulfur’ of J’BIR IHBIN AYAM, which he re-named ‘phlogiston’. This could explain why a log (rich in phlogiston) could seem to be heavier than its ashes (deficient in phlogiston). The air that is required for burning served to transport the phlogiston away.

The English chemist JOSEPH PRIESTLY (1733-1804), although a supporter of the phlogiston theory, ironically contributed to its downfall. He heated mercury in air to form red mercuric oxide and then applied concentrated heat to the oxide and noticed that it decomposed again to form mercury whilst giving off a strange gas in which things burnt brightly and vigorously. He concluded that this gas must be ‘phlogiston poor’.

Priestly combined this result with the work of the Scottish physician Daniel Rutherford (1749-1819), who had found that keeping a mouse in an enclosed airtight space resulted in its death (by suffocation) and that nothing could be burnt in the enclosed atmosphere; he formed the idea that the trapped air was so rich in phlogiston that it could accept no more. Rutherford called this ‘phlogisticated air’ and so Priestly called his own gas ‘dephlogisticated air’.

In 1774 Priestley visited the French chemist ANTOINE LAVOISIER (1743-1794).
Lavoisier repeated Priestly’s experiments with careful measurements.
Reasoning that air is made up of a combination of two gases – one that will support combustion and life, another that will not; what was important about Lavoisier’s experiments was not the observation – others had reached a similar conclusion – but the interpretation.

Lavoisier called Priestley’s ‘dephlogisticated air’, ‘oxygene’, meaning ‘acidifying principle’, believing at the time that the active principle was present in all acids (it is not). He called the remaining, ‘phlogisticated’, portion of normal air, ‘azote’, meaning ‘without life’

Oxygen is the mirror image of phlogiston. In burning and rusting (the two processes being essentially the same) a substance picks up one of the gases from the air. Oxygen is consumed, there is no expulsion of ‘phlogiston’.

Lavoisier had been left with almost pure nitrogen, which makes up about four fifths of the air we breath. We now know azote as nitrogen. Rutherford’s ‘mephitic air’ was carbon dioxide.

CALORIC

Like phlogiston, caloric was a weightless fluid, rather like elemental fire, a quality that could be transmitted from one substance to another, so that the first warmed the second up.

It was believed that all substances contained caloric and that when a kettle was being heated over a fire, the fuel gave up its caloric to the flame, which passed it into the metal, which passed it on to the water. Similarly, two pieces of wood rubbed together would give heat because abrasion was releasing caloric trapped within.

What is being transmitted is heat energy. It was the crucial distinction between the physical and the chemical nature of substances that confused the Ancients and led to their minimal elemental schemes.

NEXT buttonCHRISTIAN THEOLOGY & WESTERN SCIENCE

NEXT buttonHEAT

CHRISTIAN THEOLOGY & WESTERN SCIENCE

bust said to depict a likeness of Socrates

The speculative Greek philosophers, considering the great overarching principles that controlled the Cosmos, were handicapped by a reluctance to test their speculations by experimentation.
At the other end of the spectrum were the craftsmen who fired and glazed pottery, who forged weapons out of bronze and iron. They in turn were hindered by their reluctance to speculate about the principles that governed their craft.

WESTERN SCIENCE is often credited with discoveries and inventions that have been observed in other cultures in earlier centuries.
This can be due to a lack of reliable records, difficulty in discerning fact from legend, problems in pinning down a finding to an individual or group or simple ignorance.

The Romans were technologists and made little contribution to pure science and then from the fall of Rome to the Renaissance science regressed. Through this time, science and technology evolved independently and to a large extent one could have science without technology and technology without science.

Later, there developed a movement to ‘Christianise Platonism’ (Thierry of Chartres).

Platonism at its simplest is the study and debate of the various arguments put forward by the Greek philosopher PLATO (428/7-348/7 BCE).
The philosopher Plotinus is attributed with having founded neo-Platonism, linking Christian and Gnostic beliefs to debate various arguments within their doctrines. One strand of thought linked together three intellectual states of being: the Good (or the One), the Intelligence and the Soul. The neo-Platonic Academy in Greece was closed by the Emperor Justinian (CE 483-565) in CE 529.
During the early years of the Renaissance, texts on neo-platonism began to be reconsidered, translated and discoursed.

Aristotle’s four causes from the ‘Timaeus’ were attributed to the Christian God, who works through secondary causes (such as angels).

Efficient Cause – Creator – God the Father

Formal Cause – Secondary agent – God the Son

Material Cause – The four elements: earth, air, fire & water.
Because these four are only fundamental forms of the single type of matter, they cannot be related to any idea of ‘elements’ as understood by modern science – they could be transmuted into each other. Different substances, although composed of matter would have different properties due to the differing amounts of the qualities of form and spirit. Thus a lump of lead is made of the same type of matter (fundamental form) as a lump of gold, but has a different aggregation of constituents. Neither lead nor gold would contain much spirit – not as much as air, say, and certainly not as much as God, who is purely spiritual. ( ALCHEMY )

Final Cause – Holy Spirit

All other is ‘natural’ – underwritten by God in maintaining the laws of nature without recourse to the supernatural.
Science was the method for investigating the world. It involved carrying out careful experiments, with nature as the ultimate arbiter of which theories were right and which were wrong.

Robert Grosseteste (1168-1253) Bishop of Lincoln (Robert ‘Bighead’) – neo-platonic reading of Genesis – emanation of God’s goodness, like light, begins creation. Light is thus a vehicle of creation and likewise knowledge (hence ‘illumination’), a dimensionless point of matter with a dimensionless point of light superimposed upon it (dimensions are created by God). Spherical radiation of light carries matter with it until it is dissipated. Led to studies of optical phenomena (rainbow, refraction, reflection).

stained glass window depicting Robert Grosseteste (created 1896)

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

LEONARDO FIBONACCI (c.1170-c.1250)

Also known as Leonardo Pisano. Published ‘Liber Abaci’ in 1202.

1202 – Italy

image of statue of Leonardo Fibonacci ©

FIBONACCI

Picture of a statue of Leonardo Pisano

FIBONACCI

‘A series of numbers in which each successive term is the sum of the preceding two’

For example:   1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144….

The series is known as the Fibonacci sequence and the numbers themselves as the Fibonacci numbers.

The Fibonacci sequence has other interesting mathematical properties – the ratio of successive terms ( larger to smaller;   1/1, 2/1, 3/2, 5/3, 8/5…. ) approaches the number 1.618
This is known as the golden ratio and is denoted by the Greek letter Phi.

Phi was known to ancient Greeks.
Greek architects used the ratio 1:Phi as part of their design, the most famous example of which is the Parthenon in Athens.

Fibonacci sequence in flower petals. flowers often have a Fibonacci number of petals - link to <http://pinterest.com/mcvjfly/fibonacci/>

Fibonacci sequence in flower petals

Phi also occurs in the natural world.
Flowers often have a Fibonacci number of petals.

      

During his travels in North Africa, Fibonacci learned of the decimal system of numbers that had evolved in India and had been taken up by the Arabs.
In his book Liber Abaci he re-introduced to Europe the Arabic numerals that we use today, adhering roughly to the recipe ‘the value represented must be proportional to the number of straight lines in the symbol’.

Following the Arabs, Fibonacci ( ‘son of the simpleton’ euph. or ‘son of the innocent’ ) introduced the place–value concept, with each position representing a different power of ten and these arranged in ascending order from right to left.

Wikipedia-logo © (link to wikipedia)

NEXT button - ALBERTUS MAGNUSNEXT

Related sites

ALBERTUS MAGNUS (c.1200- 80)

Graf von Bollstaadt – ‘The Universal Doctor’

Middle ages – Europe

‘The study of the natural world leads to a glorification of God’

portrait of Albertus Magnus

ALBERTUS MAGNUS

Bavarian philosopher, theologian and alchemist.
Wrote a paraphrase on ARISTOTLE and the Arabic comments on it. Responsible for a revival in Aristotelian thought.

Albert of Cologne was the eldest son of the Count of Bollsaadt. He studied in Padua and Paris, taught in Cologne and became a Dominican monk in 1223. He was made Bishop of Regensberg in 1260 but resigned two years later and spent the rest of his life teaching in Bavaria and the surrounding districts.
He died in 1280, was beatified in 1622, canonized as St. Albert the Great in 1931, and in 1941 was declared patron saint of all who cultivate the natural sciences.
His fame is due in part to the fact that he was the forerunner, guide and teacher of St.Thomas Aquinas; but Albert of Cologne was known as Albertus Magnus even in his own lifetime because of his prolific scientific writings and his great influence on the study of philosophy and theology.
His encyclopaedic compilation of all knowledge as understood at the time included his works Physica; Summa theologiae and De natura locorum and contained scientific treatises on alchemy, astronomy, mathematics, physiology, geography, economics, logic, rhetoric, ethics, politics, phrenology, metaphysics and all branches of natural science.

detail from a portrait of ALBERTUS MAGNUS ©

Wrote on three realms of nature, De Animalibus, De Vegetablibus & De Mineralibus.
Concluded that fossils were phenomena or ‘games of nature’. Compiled a list of Aristotle’s errors.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

ROGER BACON (1214- 94)

(Doctor Mirabilis) ‘The Marvelous Doctor’

(Franciscan friar) Oxford – 1257

‘Mathematics (The first of the sciences, the alphabet of philosophy, door & key to the sciences), not Logic, should be the basis of all study’

Converted from Aristotelian to a neo-Platonist.

Etching of ROGER BACON Franciscan friar (1214- 94)

ROGER BACON

The Multiplication of Species; the means of causation (change) radiate from one object to another like the propagation of light.

‘An agent directs its effect to making the recipient similar to itself because the recipient is always potentially what the agent is in actuality.’

Thus heat radiating from a fire causes water placed near the fire,
but not in it, to become like the fire (hot). The quality of fire is multiplied in the water (multiplication of species).

All change may be analysed mathematically. Every multiplication is according to line, angles or figures. This thinking comes from the ninth century al-Kinde and his thoughts on rays and leads to a mathematical investigation into light.

Fear of the Mongols, Muslims and the Anti-Christ motivated the Franciscans. Franciscan neo-Platonism was based on Augustinian thought with a mathematical, Pythagorean, approach to nature. Bacon subscribed to this apocalyptical view, suffered trial and was imprisoned.
The Dominicans chose Aristotle – with a qualitative, non-mathematical approach to the world.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

THOMAS AQUINAS (1225- 74)

(Doctor Angelicus, Doctor Communis, Doctor Universalis)

St Thomas Aquinas

THOMAS AQUINAS

‘A theological need to explain a cause becomes the basis for a specific scientific explanation of the world’

Established by Christians and Muslims in order to confound the dualist philosophies coming out of Persia.

Thomas Aquinas was a Dominican priest, theologian, and philosopher. Called the Doctor Angelicus (the Angelic Doctor,) Aquinas is considered one the greatest Christian philosophers to have ever lived. Two of his most famous works, the Summa Theologiae and the Summa Contra Gentiles, are the finest examples of Christian philosophy.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

JOHANNES GUTENBERG (1395-1468)

Typographic resetting of Gutenberg's 42-line bible of 1452-55, using modern Fraktur and decorative initial in METAFONT by Yannis Haralambous. (Beginning of St. John's Gospel) from a LaTex advertising flyer.

1450 – Mainz, Germany

‘Movable type’

  

Hand-held block printing – a laborious process of carving whole pages of fixed text out of wooden slabs and reproducing copies using dies – had been used for many decades before the German inventor appeared. What Gutenberg mastered was the idea of placing individual metal letters – (his family background was in minting and metalworking, an ideal foundation for his training as an engraver and goldsmith. His skills enabled him to craft the first individual metal letter moulds) – into temporary mounts, which could then be dismantled or ‘moved’ once a page of text had been completed and reused to produce other pages.

In comparison to engraving and the single use of wooden blocks, the theoretically infinite number of sides which could be made out of a set of metal characters, together with the speed at which a template could be created, revolutionised printing and the spread of the printed word.

engraving of Johannes Gutenberg

Gutenberg printing press. Johannes Gutenberg (c. 13951468) invented the printing press sometime in the mid-fifteenth century. The moveable printing blocks it employed made it far simpler to operate than the complicated machinery of the Far East

Some sources credit the Chinese with inventing moveable type printing, using characters made of wood. What is notable is the quality of Gutenberg’s metal casts and press – they are almost as important as the idea of moveable type itself.

By the end of the fifteenth century tens of thousands of books and pamphlets were already in existence, giving academics the opportunity to share scientific knowledge widely and cheaply.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

LEONARDO DA VINCI (1452-1519)

1502 – Florence, Italy

‘In the Renaissance science was reinvented’

Image of the VITRUVIAN MAN

VITRUVIAN MAN

Leonardo is celebrated as the Renaissance artist who created the masterpieces ‘The Last Supper’ (1495-97) and ‘The Mona Lisa’ (1503-06). Much of his time was spent in scientific enquiry, although most of his work remained unpublished and largely forgotten centuries after his death. The genius of his designs so far outstripped contemporary technology that they were rendered literally inconceivable.

The range of his studies included astronomy, geography, palaeontology, geology, botany, zoölogy, hydrodynamics, optics, aerodynamics and anatomy. In the latter field he undertook a number of human dissections, largely on stolen corpses, to make detailed sketches of the body. He also dissected bears, cows, frogs, monkeys and birds to compare their anatomy with that of humans.

It is perhaps in his study of muscles where Leonardo’s blend of artistry and scientific analysis is best seen. In order to display the layers of the body, he developed the drawing technique of cross-sections and illustrated three-dimensional arrays of muscles and organs from different perspectives.

Leonardo’s superlative skill in illustration and his obsession with accuracy made his anatomical drawings the finest the world had ever seen. One of Leonardo’s special interests was the eye and he was fascinated by how the eye and brain worked together. He was probably the first anatomist to see how the optic nerve leaves the back of the eye and connects to the brain. He was probably the first, too, to realise how nerves link the brain to muscles. There had been no such idea in GALEN’s anatomy.

Possibly the most important contribution Leonardo made to science was the method of his enquiry, introducing a rational, systematic approach to the study of nature after a thousand years of superstition. He would begin by setting himself straightforward scientific queries such as ‘how does a bird fly?’ He would observe his subject in its natural environment, make notes on its behaviour, then repeat the observation over and over to ensure accuracy, before making sketches and ultimately drawing conclusions. In many instances he would directly apply the results of his enquiries into nature to designs for inventions for human use.

Self portrait of LEONARDO DA VINCI

LEONARDO DA VINCI

He wrote ‘Things of the mind left untested by the senses are useless’. This methodical approach to science marks a significant stepping-stone from the DARK AGES to the modern era.

1469 Leonardo apprenticed to the studio of Andrea Verrocchio in Florence

1482 -1499 Leonardo’s work for Ludovico Siorza, the Duke of Milan, included designs for weaponry such as catapults and missiles.
Pictor et iggeniarius ducalis ( painter and engineer of the Duke )’.
Work on architecture, military and hydraulic engineering, flying machines and anatomy.

1502 Returns to Florence to work for Pope Alexander VI’s son, Cesare Borgia, as his military engineer and architect.

1503 Begins to paint the ‘Mona Lisa’.

1505-07 Wrote about the flight of birds and filled his notebooks with ideas for flying machines, including a helicopter and a parachute. In drawing machines he was keen to show how individual components worked.

1508 Studies anatomy in Milan.

1509 Draws maps and geological surveys of Lombardy and Lake Isea.

1516 Journeys to France on invitation of Francis I.

1519 April 23 – Dies in Clos-Luce, near Amboise, France.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonNEXT

NEXT buttonMECHANICS

PARACELSUS (1493-1541)

Europe – early sixteenth century

‘Added salt to the mercury/sulfur diad, making a trinity to match the holy trinity’

picture of philippus aureolus theophrastus_paracelsus

PARACELSUS

Elaborating his writings with occult mystery, Theophrastus von Hohenheim renamed himself Paracelsus and helped to reform medicine by making it chemical.
Many of his ideas were erroneous and his writings were deliberately obscure; he insisted that the ‘doctrine of signatures’ could reveal efficacious drugs for different organs. Proclaiming that specific therapies could counter a particular disease was a radically different approach to the Aristotelian attempts to rebalance an individual’s internal humors.

Paracelsus extended the ‘fundamental qualities’ of the four Aristotelian elements by adding a third ‘hydrostatic principle’ to the diad of J’BIR IHBIN AYAM – saying the material manifestation of the ancient elements ( ‘…everything that lies in the four elements’ ) may be reduced to mercury, sulfur and salt.

The first distillate of an organic substance would be the thin, volatile ‘mercury’, which acted in favour of youth and life while next came the ‘sulfur’, acting in favour of growth and increase. Finally, the dry mass left behind was the ‘salt’. The concept of these three principles was considered a slight advance upon that of the four elements.

These are not the same things as we recognize today, nor elements in their own right; the first two were components of metals, salt was a principle common to all living things.

The Royal physicians of Elizabeth I of England and Henry IV of France assimilated and adapted Paracelsus’s ideas and although his theories lost credibility, his chemical remedies entered mainstream medicine.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonNEXT

NICOLAUS COPERNICUS (1473-1543)

1543 – Poland

‘The Sun is at the centre of the solar system, fixed and immobile, and planets orbit around it in perfect circles in the following order: Mercury, Venus, Earth with its moon, Mars, Jupiter and Saturn’

diagram of the heliocentric Copernican system

The heliocentric Copernican system

The Copernican system defied the dogma that the Earth stood still at the centre of the universe – a concept that dated back to ARISTOTLE, which had been given observational legitimacy by PTOLEMY and authority by Christendom – and set forth a new theory of a Sun centered universe. Why would God create a hugely complicated system of equants, epicycles and eccentrics, as Ptolemy had used to explain planetary motion around the Earth, when it would be much more simple and graceful to have them all revolving around the Sun?

“Eight hundred years before Copernicus, a model of the solar system was advanced with the Earth as a planet orbiting the Sun along with other planets”
A few centuries later this idea fell into disfavour with the early Christian Church, which placed mankind at the centre of the universe in a geo-centric model. The alternative teaching would be deemed heresy punishable by death and it would not be until the seventeenth century that the work of GALILEO, KEPLER and NEWTON gave credence to the ideas revitalized by Copernicus in 1543.

Not only did Copernicus place the Sun at the centre of the solar system, but he also gave detailed accounts of the motions of Earth, the Moon and those planets that were known at that time. Between 1510 and 1514 he drafted Commentariolus, his initial exposition of the theory. In order to have credence, the idea required that the Earth itself be not fixed in position. He said that the Earth revolves on its own axis once every twenty-four hours, which accounts for day and night and explains the apparent movement of the stars and Sun across the sky. Copernicus suggested in Commentariolus that the time taken for each planet to complete its cycle through the night sky might increase the further it is from the Sun.

Mercury’s cycle takes 88 days, which makes it the nearest planet to the Sun. Venus takes 225 days, Earth 1 year, Mars 1.9 years, Jupiter 12 years and Saturn 30 years. Thus Copernicus was able to work out the truth and attempted to establish the order of the planets.

He did not publish his findings because they were thought to contravene the teachings of the Catholic Church. Religious leaders of his time were against him. Martin Luther (founder of the Lutheran Church in Germany) denounced him as ‘a new astrologer…. the fool’ who wanted ‘to overturn the entire science of astronomy’. His book De Revolutionibus Orbium Coelestium (On the revolution of the celestial spheres) was published at the very end of his life, and a copy placed on his deathbed. Thus the greatest astronomer of his time died without seeing his book in print – the book as influential as Newton’s Principia and Darwin’s ‘On The Origin of Species’.

Portrait of Copernicus

The text was rejected by many academics; partially because the author had undermined the simplicity of his initial ideas by clinging to the Aristotelian belief that planetary motion took place in perfect circles. This meant Copernicus had been forced to introduce his own system of epicycles and other complex motions to fit in with observational evidence, thereby producing as equally complicated an explanation as the geocentric one he had initially rejected for its lack of simplicity.

It was not until Johannes Kepler offered the solution that the planets move in an elliptical, not circular, motion in 1609 that the simplicity that Copernicus had been seeking was offered and the rest of the model could be vindicated.

In fact, it was not until 1616 that the Church banned the text Copernicus eventually published for its ‘blasphemous’ content, although that sanction remained in place until 1835.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - THE STARSTHE STARS

ANDREAS VESALIUS (1514- 64)

1543 – Padua, Italy

‘In spite of his premature death, Vesalius left behind a revolutionary legacy to anatomy students’

Portrait of Vesalius &copy:

VESALIUS

By his reasoned, critical approach to GALEN he broke the reverence ascribed to the former master and created a model for independent, rational investigation in the development of medical science.

 

In 1543, Vesalius published ‘De Humani Corporis Fabrica Libri Septem‘ (The Seven Books on the Structure of the Human Body). Book One reveals Vesalius’s understanding of the importance of the skeleton. Book Two is about muscles; Book Three – Veins and Arteries; Book Four – The Nervous System. Book Five concerns the Main Body Organs; Book Six – The Heart & Lungs; Book Seven – The Brain.

 

At 42cm tall and 28cm wide with over 700 densely packed pages, it was impressive in size alone. It contained 200 illustrations, was the first definitive work on human anatomy actually based on the results of methodical dissections of humans and was the most accurate work on the subject ever written. Galen himself had never dissected a human body as this had been forbidden by Roman religious laws.

Anatomical Study Illustration from De Humani Corporis Fabrica 1543Anatomical Study Illustration from De Humani Corporis Fabrica 1543

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMEDICINE

Related sites

TYCHO BRAHE (1546-1601)

1577 – Denmark

‘The heavens are changeable, and the comets move through space. The Earth is the centre of the Universe, and round it rotates the Moon and the Sun. The planets orbit the Sun’

heliocentrismo-de-brahe459x444

Up to now it had been believed that planets were carried on ‘heavenly spheres’ that fit tightly around each other.

Brahe dissented from the Copernican doctrine and accepted the dogma that the Earth stood still. His real contribution to astronomy was as an observer, rather than as a theorist. He accurately measured the position of 777 stars, a remarkable achievement considering it was done without a telescope. He also measured the movement of planets, but was unable to determine their orbits.

His observations paved the way for the discoveries of his assistant, Kepler. After Brahe’s death Kepler inherited Brahe’s vast accumulation of data on planetary observations.

portrait of tycho brahe

TYCHO BRAHE

Brahe’s observation of the supernova of 1572 and the comet of 1577 convinced him that the Universe was not unchangeable as was believed by philosophers of his time. The notion of celestial spheres was not possible because comets moved through these spheres. But he still placed the Earth at the centre of the Universe. His contemporary, the Italian philosopher GIORDANO BRUNO (1548-1600), believed in the Sun centered Copernican system and for these heretical beliefs was burned at the stake.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE STARS

JOHN DEE (1527-1608)

1590 – London, England

portrait of john dee

JOHN DEE

‘Mathematician, cartographer & astronomer. Prolific author, natural magician, alchemist.’

‘Alternative knowledge and methods of learning. ‘Conversations with Angels’. Human power over the world (neo-Platonism).’

Dee was a Hermetic philosopher, a major influence on the ROSICRUCIANS, possibly a spy – astrologer and adviser to Queen Elizabeth I ; he chose the day of her coronation.

One of the greatest scholars of his day. His library in his home in Mortlake, London, contained more than 3,000 books.

Greatly influenced by Edward Kelley (1555- 97), whom he met in 1582; from 1583-1589 Dee and Kelley sought the patronage of assorted mid-European noblemen and kings, eventually finding it from the Bohemian Count Vilem Rosenberg.

In 1589, Dee left Kelley to his alchemical research and returned to England where Queen Elizabeth I granted him a position as a college warden, but he had lost respect owing to his occult reputation. Dee returned to Mortlake in 1605 in poor health and increasing poverty and ended his days as a common fortune-teller.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

FRANCIS BACON (1561-1626)

1620 – England

‘Scientific laws must be based on observations and experiments’

Bacon rejected ARISTOTLE‘s deductive or a priori, approach to reasoning and suggested his own, inductive, or a posteriori, approach. Bacon developed the scientific method – but he did not make any significant scientific discovery.

‘I shall content myself to awake better spirits like a bell-ringer, who is first up to call others to church’

Portrait of FRANCIS BACON ©

FRANCIS BACON

Bacon, a philosopher, advocated a new method of enquiry, completely different from the philosophical methods of the ancient Greeks, in his book Novum Organum – which has influenced scientists since its publication in 1620.

The text proposed the sentiment of ‘The Advancement of Learning’ (1605) signaling dissatisfaction with the limits of, and approaches to, knowledge to date and foresaw a future where the ancient masters would be far surpassed – Aristotle had written a text called Organum or ‘Logical Works’ and Bacon’s ‘new’ approach suggested an alternative direction to scientific study.

Bacon strongly criticised Aristotle’s deductive method of science, which involved formulating abstract ideas and ‘logically’ building upon them step-by-step to find ‘truths’, without thorough consideration of whether the theoretical foundation in itself was ever valid.

Rather than rely on superstition or accept unquestioningly the flawed solutions of the ancient academics as had largely been the case for two thousand years, Bacon’s alternative was to argue for ‘inductive’ reason, where the only ‘certain’ statements that should ever be made were based on observation and proof collected from the natural world. The essence of his method is to collect masses of data by observations and experiments, analyse facts by drawing up tables of negative, affirmative and variable instances of the phenomenon ( ‘Tables of Comparative Instances’ ), draw (induce) hypotheses from the evidence, then to collect further evidence to proceed towards a more general theory. The most important aspect of this method was the idea of drawing up tentative hypotheses from available data and then verifying them by further investigations.

‘A true and fruitful natural philosophy has a double scale or ladder ascendant or descendant, ascending from experiments to axioms and descending from axioms to the invention of new experiments’, he wrote in Novum Organum.

Bacon cautioned those trying to practice his new method, urging them to repudiate four kinds of intellectual idol

  • Perceptual Illusions – ‘idols of the tribe’

  • Personal biases – ‘idols of the cave’

  • Linguistic confusions – ‘idols of the market place’

  • Dogmatic philosophical systems – ‘idols of the theatre’

more

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE