THE MEDIEVAL ARAB SCIENTISTS

A great deal of what we know about the ancient world and its scientific ideas has come to us from documents which were translated from ancient Greek or other ancient languages into Arabic, and later from Arabic into European languages. The material reached the Arab world in many cases through the Roman empire in the East, Byzantium, which survived until 1453, almost a thousand years after the fall of Rome, during the period known in Europe as the Dark Ages.
During this time the consolidating influence of Islāmic religion saw Arab Muslims begin to build an empire that was to stretch across the Middle East and across North Africa into Spain. At the heart of the Islāmic world the caliphs ruled in Baghdad. Arab scientists sowed the seeds that would later be reaped in the scientific revolution of the seventeenth century, especially under the Abbasid dynasty during the caliphate of Harun al-Rashid and his son al-Mamun, and the Middle East became the intellectual hub of the World.

depiction of early islamic scholars at work at various scientific investigations

In the ninth century, at the House of Wisdom – a mixture of library, research institute and university – scholars worked to translate the great works of the GREEK thinkers. Muslim scholars of this golden age made important and original contributions to mathematics and astronomy, medicine and chemistry. They developed the ASTROLABE, which enabled astronomers to measure the position of the stars with unparalleled accuracy.Astrology & Astronomy in Iran and Ancient Mesopotamia: Astrolabe: An ancient astronomical instrument
In medicine they made the first serious studies of drugs and advanced surgery. A number of mathematicians, including Habash al-Hasib (‘he who calculates’), Abul’l-Wafa al-Buzjani, Abu Nasr al-Iraq and Ibn Yunus formulated trigonometry (including all six trig functions [ sin, cosec, cos, sec, tan, and cot ]) at a level far above that introduced by the Greek astronomer-mathematician HIPPARCHUS in the second century BCE.
It is largely through such efforts that Greek ideas were preserved through the DARK AGES.

more

Eight hundred years before COPERNICUS, a model of the solar system was advanced with the Earth as a planet orbiting the Sun along with other planets.

A few centuries later this idea fell into disfavour with the early Christian Church, which placed mankind at the centre of the universe in a geo-centric model. The alternative teaching would be deemed heresy punishable by death and it would not be until the seventeenth century that the work of GALILEO, KEPLER and NEWTON gave credence to the ideas revitalized by Copernicus in 1543.

It is worth noting that even to-day at least half the named stars in the sky bear Arabic names (Aldebaran and Algol amongst others) and many terms used in astronomy, such as Nadir and Azimuth, are originally Arabic words.

 The Ulugh Beg Observatory in Samarkand, Uzbekistan

The elaborate observatory established by the Ulugh Begg in Samarkand in the fifteenth century appeared to function with a dictum meant to challenge PTOLEMY’s geocentric picture of the universe sanctioned by the Church in Europe. Arabic scholars had access to the early teachings of ARISTARCHUS, the astronomer from Samos of the third century BCE. (referred to by Copernicus in the forward of an early draft of De Revolutionibus, although omitted from the final copy)

NEXT buttonNEXT

Advertisements

THE DARK AGES

THE THIRTEENTH CENTURY

Ideas on ‘impetus’ and the motion of the heavenly spheres.

Diversity of opinion on what keeps the heavenly orbs moving.

The recipe literature – craft manuals outlining recipes for manufacture of alchemical materials. For example, glass production had died out in the Latin West, but remained important in the Arab world.

ROGER BACON suggests that alchemical power can surpass nature (human artifice may exceed nature, i.e. technology), compared with Aristotle, who suggests that artifice may only mimic nature, or complete that which nature has failed to finish.

Suma Perfectionis’, Gaber – Latin Franciscan text (passed off as Arabic). Underpinned by the sulfur-mercury theory and by Aristotle’s ‘minima naturalia’ (smallest of natural things)– the idea of a minimum amount of matter to hold a form – hence a smallest particle of any given substance. This differs from atomism but the ideas were not developed by Aristotle.

Thus, in the middle ages came the belief that metals are created by the coalescence of minima of the metals.
Particles may be tightly or lightly packed (density). Matter may be contaminated.
Noble metals (gold) are tightly packed small particles, unaffected by fire or corrosion.
Lead turns to powder (oxidised) in fire as it is composed of larger, less tightly packed particles.
Sublimation is explained by smaller, lighter particles being driven upward by fire, and so on.

THE FOURTEENTH CENTURY

Texts become more secret, written in code and disguised. Latin texts are written in such a style so as to appear to be derived from ARABIC.

1317 – The Pope outlaws transmutation.

Moral questions: ‘is alchemical gold as valuable as real gold?’

Quintessences’: the refined essences of metals.

The discovery that lead cannot be turned to gold has important consequences. It is a strong indication that some substances are truly permanent and indestructible.

NEXT buttonALCHEMY