THOMAS MALTHUS (1766-1834)

1798 – England

‘If unchecked, the human population would grow geometrically while the food supply could only grow arithmetically. In two centuries the population would be to the food supply 256:9’

(In an arithmetic series of numbers there is a common difference between any number and its successor, while in a geometric series each number is a constant multiple of the preceding number)

When Malthus, an obscure country curate, published his Essay on the Principle of Population it excited much attention and placed its author in the centre of a controversial political debate on population. The essay was denounced as unholy, atheistic and subversive of the social order. FRIEDRICH ENGELS, the cofounder of communism, criticised Malthus’ essay for underestimating science;

But science increases as fast as population – in the most normal conditions it also grows in geometrical progression – and what is impossible for science?

Malthusian ideas form the foundations of some theories on the relationship between economics, population and the environment.
DARWIN wrote in his book ‘The Origin of Species’ that his theory ‘is the doctrine of Malthus applied with manifold force to the whole animal and vegetable kingdoms’.

Wikipedia-logo © (link to wikipedia)


JOHN DALTON (1766-1844)

1801 England

‘The total pressure of a mixture of gases is the sum of the partial pressures exerted by each of the gases in the mixture’

Partial pressures of gases:
Dalton stated that the pressure of a mixture of gases is equal to the sum of the pressures of the gases in the mixture. On heating gases they expand and he realised that each gas acts independently of the other.

Each gas in a mixture of gases exerts a pressure, which is equal to the pressure it would exert if it were present alone in the container; this pressure is called partial pressure.

Dalton’s law of partial pressures contributed to the development of the kinetic theory of gases.

His meteorological observations confirmed the cause of rain to be a fall in temperature, not pressure and he discovered the ‘dew point’ and that the behaviour of water vapour is consistent with that of other gases.

He showed that a gas could dissolve in water or diffuse through solid objects.

Graph demonstrating the varying solubility of gases

The varying solubility of gases

Further to this, his experiments on determining the solubility of gases in water, which, unexpectedly for Dalton, showed that each gas differed in its solubility, led him to speculate that perhaps the gases were composed of different ‘atoms’, or indivisible particles, which each had different masses.
On further examination of his thesis, he realised that not only would it explain the different solubility of gases in water, but would also account for the ‘conservation of mass’ observed during chemical reactions – as well as the combinations into which elements apparently entered when forming compounds – because the atoms were simply ‘rearranging’ themselves and not being created or destroyed.

In his experiments, he observed that pure oxygen will not absorb as much water vapour as pure nitrogen – his conclusion was that oxygen atoms were bigger and heavier than nitrogen atoms.

‘ Why does not water admit its bulk of every kind of gas alike? …. I am nearly persuaded that the circumstance depends on the weight and number of the ultimate particles of the several gases ’

In a paper read to the Manchester Society on 21 October 1803, Dalton went further,

‘ An inquiry into the relative weight of the ultimate particles of bodies is a subject as far as I know, entirely new; I have lately been prosecuting this enquiry with remarkable success ’

Dalton described how he had arrived at different weights for the basic units of each elemental gas – in other words the weight of their atoms, or atomic weight.

Dalton had noticed that when elements combine to make a compound, they always did so in fixed proportions and went on to argue that the atoms of each element combined to make compounds in very simple ratios, and so the weight of each atom could be worked out by the weight of each element involved in a compound – the idea of the Law of Multiple Proportions.

When oxygen and hydrogen combined to make water, 8 grammes of oxygen was used for every 1 gramme of hydrogen. If oxygen consisted of large numbers of identical oxygen atoms and hydrogen large numbers of hydrogen atoms, all identical, and the formation of water from oxygen and hydrogen involved the two kinds of atoms colliding and sticking to make large numbers of particles of water (molecules) – then as water has an identity as distinctive as either hydrogen or oxygen, it followed that water molecules are all identical, made of a fixed number of oxygen atoms and a fixed number of hydrogen atoms.

Dalton realised that hydrogen was the lightest gas, and so he assigned it an atomic weight of 1. Because of the weight of oxygen that combined with hydrogen in water, he first assigned oxygen an atomic weight of 8.

There was a basic flaw in Dalton’s method, because he did not realise that atoms of the same element can combine. He assumed that a compound of atoms, a molecule, had only one atom of each element. It was not until Italian scientist AMADEO AVOGADRO’s idea of using molecular proportions was introduced that he would be able to calculate atomic weights correctly.

In his book of 1808, ‘A New System of Chemical Philosophy’ he summarised his beliefs based on key principles: atoms of the same element are identical; distinct elements have distinct atoms; atoms are neither created nor destroyed; everything is made up of atoms; a chemical change is simply the reshuffling of atoms; and compounds are made up of atoms from the relevant elements. He published a table of known atoms and their weights, (although some of these were slightly wrong), based on hydrogen having a mass of one.

Nevertheless, the basic idea of Dalton’s atomic theory – that each element has its own unique sized atoms – has proved to be resoundingly correct.

If oxygen atoms all had a certain weight which is unique to oxygen and hydrogen atoms all had a certain weight that was unique to hydrogen, then a fixed number of oxygen atoms and a fixed number of hydrogen atoms combined to form a fixed weight of water molecules. Each water molecule must therefore contain the same weight of oxygen atoms relative to hydrogen atoms.

Here then is the reason for the ‘law of fixed proportions’. It is irrelevant how much water is involved – the same factors always hold – the oxygen atoms in a single water molecule weigh 8 times as much as the hydrogen atoms.

Dalton wrongly assumed that elements would combine in one-to-one ratios as a base principle, only converting into ‘multiple proportions’ (for example from carbon monoxide, CO, to carbon dioxide, CO2) under certain conditions. Each water molecule (H2O) actually contains two atoms of hydrogen and one atom of oxygen. An oxygen atom is actually 16 times as heavy as a hydrogen atom. This does not affect Dalton’s reasoning.

The law of fixed proportions holds because a compound consists of a large number of identical molecules, each made of a fixed number of atoms of each component element.

Although the debate over the validity of Dalton’s thesis continued for decades, the foundation for the study of modern atomic theory had been laid and with ongoing refinement was gradually accepted.

A_New_System_of_Chemical_Philosophy - DALTON's original outline


Wikipedia-logo © (link to wikipedia)



Related articles

<< top of page


1808 – Manchester, England

‘All matter is made up of atoms, which cannot be created, destroyed or divided. Atoms of one element are identical but different from those of other elements. All chemical change is the result of combination or separation of atoms’

Dalton struggled to accept the theory of GAY-LUSSAC because he believed, as a base case, that gases would seek to combine in a one atom to one atom ratio (hence he believed the formula of water to be HO not H2O). Anything else would contradict Dalton’s theory on the indivisibility of the atom, which he was not prepared to accept.

The reason for the confusion was that at the time the idea of the molecule was not understood.
Dalton believed that in nature all elementary gases consisted of indivisible atoms, which is true for example of the inert gases. The other gases, however, exist in their simplest form in combinations of atoms called molecules. In the case of hydrogen and oxygen, for example, their molecules are made up of two atoms, described as H2 and O2 respectively.

Gay-Lussac examined various substances in which two elements form more than one type of compound and concluded that if two elements A and B combine to form more than one compound, the different masses of A that combine with a fixed mass of B are in a simple whole number ratio. This is the law of multiple proportions.

AVOGADRO’s comprehension of molecules helped to reconcile Gay-Lussac’s ratios with Dalton’s theories on the atom.

Gay-Lussac’s ratio for water could be explained by two molecules of hydrogen (four ‘atoms’) combining with one molecule of oxygen (two ‘atoms’) to result in two molecules of water (2H2O).

2H2 + O2 ↔ 2H2O

When Dalton had considered water, he could not understand how one atom of hydrogen could divide itself (thereby undermining his indivisibility of the atom theory) to form two particles of water. The answer proposed by Avogadro was that oxygen existed in molecules of two and therefore the atom did not divide itself at all.

Wikipedia-logo © (link to wikipedia)




1843 – England

‘A given amount of work produces a specific amount of heat’

4.18 joules of work is equivalent to one calorie of heat.

In 1798 COUNT RUMFORD suggested that mechanical work could be converted into heat. This idea was pursued by Joule who conducted thousands of experiments to determine how much heat could be obtained from a given amount of work.

Even in the nineteenth century, scientists did not fully understand the properties of heat. The common belief held that it was some form of transient fluid – retained and released by matter – called CALORIC. Gradually, the idea that it was another form of energy, expressed as the movement of molecules gained ground.
Heat is now regarded as a mode of transfer of energy – the transfer of energy by virtue of a temperature difference. Heat is the name of a process, not that of an entity.

Joule began his experiments by examining the relationship between electric current and resistance in the wire through which it passed, in terms of the amount of heat given off. This led to the formulation of Joule’s ideas in the 1840s, which mathematically determined the link.

Joule is remembered for his description of the conversion of electrical energy into heat; which states that the heat (Q) produced when an electric current (I) flows through a resistance (R) for a time (t) is given by Q=I2Rt

Its importance was that it undermined the concept of ‘caloric’ as it effectively determined that one form of energy was transforming itself into another – electrical energy to heat energy. Joule proved that heat could be produced from many different types of energy, including mechanical energy.

john collier portrait of james prescott joule (1200 x 1600)


The apparatus pictured was used by James Joule to demonstrate equivalence of mechanical work and heat. He calculated the work done by the pull of gravity on the weight. That pull turned the paddle wheels, which mixed the water in the insulated container. The water was warmed by the mixing, showing that heat = work

Calorimeter used by Joule in his 1876 determination of the mechanical equivalent of heat.

Joule was the son of a brewer and all his experiments on the mechanical equivalent of heat depended upon his ability to measure extremely slight increases in temperature, using the sensitive thermometers available to him at the brewery. He formulated a value for the work required to produce a unit of heat. Performing an improved version of Count Rumford’s experiment, he used weights on a pulley to turn a paddle wheel immersed in water. The friction between the water and the paddle wheel caused the temperature of the water to rise slightly. The amount of work could be measured from the weights and the distance they fell, the heat produced could be measured by the rise in temperature.

Joule went on to study the role of heat and movement in gases and subsequently with WILLIAM THOMSON, who later became Lord Kelvin, described what became known as the ‘Joule-Thomson effect’ (1852-9). This demonstrated how most gases lose temperature on expansion due to work being done in pulling the molecules apart.

Thomson thought, as CARNOT had, that heat IN equals heat OUT during a steam engine’s cycle. Joule convinced him he was wrong.

The essential correctness of Carnot’s insight is that the work performed in a cycle divided by heat input depends only on the temperature of the source and that of the sink.

Synthesising Joule’s results with Carnot’s ideas, it became clear that a generic steam engine’s efficiency – work output divided by heat input – differed from one (100%) by an amount that could be expressed either as heat OUT at the sink divided by heat IN at the source, or alternatively as temperature of the sink divided by temperature of the source. Carnot’s insight that the efficiency of the engine depends on the temperature difference was correct. Temperature has to be measured using the right scale. The correct one had been hinted at by DALTON and GAY-LUSSAC’s experiments, in which true zero was -273degrees Celsius.

A perfect cyclical heat engine with a source at 100degrees Celsius and a sink at 7degrees has an efficiency of 1 – 280/373. The only way for the efficiency to equal 100% – for the machine to be a perfect transformer of heat into mechanical energy – is for the sink to be at absolute zero temperature.

Joule’s work helped in determining the first law of thermodynamics; the principle of the conservation of energy. This was a natural extension of his work on the ability of energy to transform from one type to another.

Joule contended that the natural world has a fixed amount of energy which is never added to nor destroyed, but which just changes form.

The SI unit of work and energy is named the joule (J)

link to James Joule - Manchester Museum of Science & Industry

Manchester Museum of Science & Industry

Wikipedia-logo © (link to wikipedia)




Related articles

<< top of page


1911 Manchester, England

‘The atom contains a core or nucleus of very high density and very concentrated positive charge. Most of the atom is empty space, with the electrons moving about the tiny central nucleus’

Early photograph of ERNEST RUTHERFORD


Working under JJ THOMSON (1856-1940) at the Cambridge Cavendish Laboratory and later at the McGill University in Montreal, in 1898 Rutherford put forward his observation that radioactive elements give off at least two types of ray with distinct properties, ‘alpha’ and ‘beta’ rays.

In 1900 he confirmed the existence of ‘gamma’ rays, which remained unaffected by a magnetic force, whilst alpha and beta rays were both deflected in different directions by such an influence. Although both displayed the ability to stab through solid matter, alpha rays were far less penetrating than beta rays.
He proved through experimental results that they were helium atoms missing two electrons.

Alpha Beta Particles, Gamma Rays in a Magnetic Field

Alpha Beta Particles, Gamma Rays in a Magnetic Field

Alpha rays are in fact positively charged helium atoms that become true helium when they slow down and their charge is neutralised by picking up electrons.
Beta rays were later shown to be made up of electrons, and gamma rays to have a shorter wavelength than X-rays.

diagram showing comparative penetrations of Alpha Beta Gamma radiation

Alpha Beta Gamma radiation

In Montreal, Rutherford worked with Frederick Soddy and showed that over a period of time, half of the atoms of a radioactive substance could disintegrate. During the process the substance spontaneously transmuted to other elements. During radioactive decay, one kind of atom (radium) was ejecting another kind of atom (helium).

Working with other elements, Rutherford and Soddy found that each radioactive element had its own characteristic ‘half-life’. After one half-life, a sample retained only half its original radioactivity, after two half-lives a quarter, after three half-lives an eighth. The half-life of thorium emanation, now known as radon, was close to a minute. The half-lives of other radioactive elements ranged from a split-second to many billions of years. That of radium was 1620 years, while uranium had a half-life of 4.5 billion years.

The concept of half-life provides a way of measuring the age of rocks. As radioactive atoms decay they emit alpha particles. As these are essentially helium atoms, the amount of helium gas accumulates within the pores and fissures of a sample of a uranium mineral as a measure of how many atoms have decayed. Heating samples to drive off their helium and measuring the amount gives an indication of their age.
In order to provide more reliable dates, measuring the amount of lead, the ultimate decay product, compared with the amount of uranium, eliminates the errors introduced by the escape of some of the helium decay product to the air.

Dating rocks in this way gives an estimate of the age of the Earth, and by implication also the Sun, of around 4.5 billion years.

A radioactive atom is simply a heavy atom, which happens to be unstable. Eventually it disintegrates by expelling an alpha, beta or gamma ray. What remains is an atom of a slightly lighter element. A radioactive atom may decay more than once. Uranium, for instance, transforms itself into a succession of lighter and lighter atoms, one of which is radium, until it achieves stability as a non-radioactive atom of lead.

English: Radioactive decay modes


Working with HANS GEIGER (1882-1945), Rutherford developed the Geiger counter at Manchester University in 1908. This device measured radiation and was used in Rutherford’s work on identifying the make-up of alpha rays.

While he was at McGill, Rutherford had experimented firing alpha particles at a photographic plate. He had noticed that, while the image produced was sharp; if he passed the alpha particles through thin plates of mica, the resulting image on the photographic plate was diffuse. The particles were clearly being deflected through small angles as they passed close to the atoms of mica.
In 1910 his team undertook work to examine the results of directing a stream of alpha particles at a piece of platinum foil. While most passed through, about one in eight thousand bounced back – that is, deflected through an angle of more than 90 degrees.

Deflection of alpha Particles by Thin Metal Foil

Deflection of alpha Particles by Thin Metal Foil

In 1911 he put forward the theory that the reason for the rate of deflection was because atoms contained a minute nucleus that bore most of the weight, while the rest of the atom was largely ’empty space’ in which electrons orbited the nucleus much as planets orbit the Sun. The reason that one in eight thousand alpha particles bounced back was because they were striking the positively charged nucleus of an atom, whereas the rest simply passed through the spacious part.

But what was an atomic nucleus made of?
At 100,000th the size of the atom, it would take decades of painstaking experiments to discover.

In 1919, working in collaboration with other scientists, Rutherford artificially induced the disintegration of atoms by collision with alpha particles. In the process the atomic make-up of the element changed as protons were forced out of the nucleus. He transmuted nitrogen into oxygen (and hydrogen) and went on to repeat the process with other elements.

(image source)

picture of the Nobel medal - link to nobelprize.orgLink to WIKIPEDIA


<< top of page

NIELS BOHR (1885-1962)

1913 – Denmark

‘Electrons in atoms are restricted to certain orbits but they can move from one orbit to another’

Bohr’s was the first quantum model for the internal structure of the atom.

Bohr worked with RUTHERFORD in Manchester and improved upon Rutherford’s model, which said that electrons were free to orbit the nucleus at random.

Classical physics insisted that electrons moving around the nucleus would eventually expire and collapse into the nucleus as they radiated energy. Bohr resolved the issue surrounding Rutherford’s atomic structure by applying the concept of quantum physics set out by MAX PLANCK in 1900.
He suggested that the electrons would have to exist in one of a number of specific orbits, each being defined by specific levels of energy. From the perspective of quantum theory, electrons only existed in these fixed orbits where they did not radiate energy. The electrons could move to higher-level orbits if energy was added, or fall to lower ones if they gave out energy. The innermost orbit contains up to two electrons. The next may contain up to eight electrons. If an inner orbit is not full, an electron from an outer orbit can jump into it. Energy is released as light (a photon) when this happens. The energy that is released is a fixed amount, a quantum.

Quanta of radiation would only ever be emitted as an atom made the transition between states and released energy. Electrons could not exist in between these definite steps. This quantised theory of the electrons’ orbits had the benefits of explaining why atoms always emitted or absorbed specific frequencies of electromagnetic radiation and of providing an understanding of why atoms are stable.

Bohr calculated the amount of radiation emitted during these transitions using Planck’s constant. It fitted physical observations and made sense of the spectral lines of a hydrogen atom, observed when the electromagnetic radiation (caused by the vibrations of electrons) of the element was passed through a prism.
The prism breaks it up into spectral lines, which show the intensities and frequencies of the radiation – and therefore the energy emissions and absorptions of the electrons.

Each of the elements has an atomic number, starting with hydrogen, with an atomic number of one. The atomic number corresponds to the number of protons in the element’s atoms. Bohr had already shown that electrons inhabit fixed orbits around the nucleus of the atom.
Atoms strive to have a full outer shell (allowed orbit), which gives a stable structure. They may share, give away or receive extra electrons to achieve stability. The way that atoms will form bonds with others, and the ease with which they will do it, is determined by the configuration of electrons.
As elements are ordered in the periodic table by atomic number, it can be seen that their position in the table can be used to predict how they will react.

In addition to showing that electrons are restricted to orbits, Bohr’s model also suggested that

  • the orbit closest to the nucleus is lowest in energy, with successively higher energies for more distant orbits.
  • when an electron jumps to a lower orbit it emits a photon.
  • when an electron absorbs energy, it jumps to a higher orbit.

Bohr called the jump to another orbit a quantum leap.

Although it contained elements of quantum theory, the Bohr model had its flaws. It ignored the wave character of the electron. Work by WERNER KARL HEISENBERG later tackled these weaknesses.

Bohr’s theory of complementarity states that electrons may be both a wave and a particle, but that we can only experience them as one or the other at any given time. He showed that contradictory characteristics of an electron could be proved in separate experiments and none of the results can be accepted singly – we need to hold all the possibilities in mind at once. This requires a slight adjustment to the original model of atomic structure, we can no longer say that an electron occupies a particular orbit, but can only give the probability that it is there.

In 1939 he developed a theory of nuclear fission with Jon Archibald Wheeler (b.1911) and realised that the 235uranium isotope would be more susceptible to fission than the more commonly used 238uranium.
The element bohrium is named after him.

picture of the Nobel medal - link to






University of Manchester logo used as link to MXIF pages


1914 – Manchester, England

‘Moseley’s law – the principle outlining the link between the X-ray frequency of an element and its atomic number’

ca. 1910s --- Physicist Henry Gwyn Jeffreys MOSELEY --- Library Image by © Bettmann/CORBIS


Working with ERNEST RUTHERFORD’s team in Manchester trying to better understand radiation, particularly of radium, Moseley became interested in X-rays and learning new techniques to measure their frequencies.
A technique had been devised using crystals to diffract the emitted radiation, which had a wavelength specific to the element being experimented upon.

In 1913, Moseley recorded the frequencies of the X-ray spectra of over thirty metallic elements and deduced that the frequencies of the radiation emitted were related to the squares of certain incremental whole numbers. These integers were indicative of the atomic number of the element, and its position in the periodic table. This number was the same as the positive charge of the nucleus of the atom (and by implication also the number of electrons with corresponding negative charge).

By uniting the charge in the nucleus with an atomic number, a vital link had been found between the physical atomic make up of an element and its chemical properties, as indicated by where it sits in the periodic table.
This meant that the properties of an element could now be considered in terms of atomic number rather than atomic weight, as had previously been the case – certain inconsistencies in the MENDELEEV version of the periodic table could be ironed out. In addition, the atomic numbers and weights of several missing elements could be predicted and other properties deduced from their expected position in the table.

picture of the Nobel medal - link to





1932 Manchester, England

‘Discovery of neutrons – elementary particles devoid of any electric charge’

In contrast with the Helium nuclei (alpha rays) which are charged, and therefore repelled by the electrical forces present in the nuclei of heavy atoms, the neutron is capable of penetrating and splitting the nuclei of even the heaviest elements, creating the possibility of the fission of 235uranium

Assistant to ERNEST RUTHERFORD, Chadwick’s earlier work involved the showering of elements with alpha particles. The picture that gradually emerged was one of a nucleus that contained a very heavy particle with a positive electric charge. This particle was christened the proton, the hydrogen building block envisaged by WILLIAM PROUT.
A spin-off of this was the deduction that the nucleus of the hydrogen atom, the positively charged proton with an atomic weight of one was present in larger quantities in the nucleus of every other atom.

Rutherford and Geiger had shown that a helium atom and an alpha particle were the same thing, apart from the positive electric charge carried by the alpha particle.

A helium atom seemed to consist of a nucleus of a pair of protons circled by two electrons. However, a helium nucleus seemed to weigh as much as four protons. The mass of the known components of an atom did not add-up. Protons seemed to account for around half of the weight and were matched in number by an equal amount of negatively charged electrons to counter their positive charge. But the weight of an electron was one-thousandth that of a proton, so approximately half of the atomic weight of the element was unaccounted for.
Chadwick solved the conundrum in 1932 when he re-interpreted the results of an experiment carried out by IRENE and FREDERIC JULIOT-CURIE (Irene was the daughter of PIERRE and MARIE CURIE).
The couple had found in 1932 that when beryllium was showered with alpha particles, the resultant radiation could force protons out of substances containing hydrogen. Chadwick suggested that neutrally charged sub-atomic units, which he named neutrons, with the same weight as protons, could force this reaction and therefore were what made up the radiation that the Curies called gamma rays. Rutherford had hinted at the existence of such a particle in 1920.

The explanation was widely accepted and the riddle of `atomic weight’ had been solved: a similar number of neutrons to protons in the nucleus of an element would make up the remaining fifty per cent of the previously ‘missing’ mass.

photo portrait of FREDERICK SODDY ©


The discovery of the neutron made sense of the observation that many elements come in a variety of forms, each with differing radioactive properties such as decay rate. Each form consisted of atoms with a different mass. Frederick Soddy christened these variants ‘isotopes’ in 1911. The idea that each element might be a mixture of atoms of different atomic weights explained why the atomic weights of a handful of elements were not simple multiples of the atomic weight of hydrogen, the most notorious example being chlorine whose atomic weight was 35.5 times that of hydrogen. Most of the variant forms of each element turned out to be radioactively unstable. An element such as chlorine, with more than one stable isotope, is rare.

The various isotopes of an element were merely atoms with the same number of protons in their nucleus but with a different number of neutrons.

artistic representation of atomic disintegration

Thus every atom was composed of electrons, protons and neutrons. The protons and neutrons clung together in a central clump – the atomic nucleus – while the electrons circled in a distant haze. The neutrons were responsible for increasing the weight of the elements without adding any electrical charge. Two protons and two neutrons made a helium nucleus; eight protons and eight neutrons an oxygen nucleus; 26 protons and 30 neutrons an iron nucleus; 79 protons and 118 neutrons a gold; and 92 protons and 146 neutrons a nucleus of uranium. When a radioactive nucleus expelled an alpha particle, it lost two neutrons and two protons and consequently became a nucleus of an element two places lower in the periodic table. When a radioactive nucleus emitted a beta particle, however, a neutron changed into a proton, transforming the nucleus into that of an element one place higher in the periodic table.

picture of the Nobel medal - link to

Wikipedia-logo © (link to wikipedia)



<< top of page

ALAN TURING (1912- 54)

1937 – UK

photo of ALAN TURING ©


‘A theoretical computer with two or more possible states; which can react to an input to produce an output’

Turing conceived the idea of a universal machine that employed an algorithm to solve a problem, writing the algorithm as a set of instructions using a standard code.

In 1950 Turing suggested that it must be possible to program computers to acquire human intelligence and devised the test suggesting that if the response from a computer is indistinguishable from that of a human, the computer could be said to be intelligent.

Wikipedia-logo © (link to wikipedia)