PYTHAGORAS (c.560 – c.480 BCE)

diagrammatic proof of Pythagoras' theoremSixth Century BCE – Greece

‘In a right-angled triangle, the square on the hypotenuse is the sum of the squares on the other two sides’

The Theorem may also be written as a general law:  a2 + b2 = c2  where c is the length of the hypotenuse of a right-angled triangle, and a and b the lengths of the other two sides. Pythagoras’ theorem is a starting point for trigonometry, which has many practical applications such as calculating the height of mountains and measuring distances.

c.525 BCE – Pythagoras taken prisoner by the Babylonians

c.518 BCE – establishes his own academy at Croton (now Crotone) in southern Italy

c.500 BCE – Pythagoras moves to Metapontum

Pythagoras was the first to prove the relationship between the sides of a right-angled triangle, but he did not discover it – it was known to Babylonians for nearly 1000 years before him.

His disciples, members of the semi-religious, philosophical school he founded, may have actually found many of the mathematical discoveries credited to Pythagoras. The inner circle of followers were known as mathematikoi and, unusually for the time, included women among its membership. An outer circle, the akousmatics, lived in their own homes and came in to the school by day.

Of the five key beliefs the Pythagoreans held, the idea that ‘all is number’ was dominant; the belief that reality at its fundamental level is mathematical and that all physical things like musical scales, or the spherical earth and its companions the stars and the universe, are mathematically related. Pythagoras was responsible for the widely held Greek belief that real knowledge had to be like mathematics – universal, permanent, obtained by pure thought and uncontaminated by the senses.

Because of the reverence with which the originator of the Pythagoreans was treated by his followers and biographers, it is difficult to discern legend from fact, such as the notion that he was the first to offer a three-part argument that the shape of the Earth is spherical:
The field of stars changes with the latitude of the observer; the mast of a ship comes into view before its hull as the ship approaches the shore from a distance; and the shadow of the Earth cast on the moon during a lunar eclipse is always round.

After Pythagoras, the idea of a ‘perfect’ mathematical interrelation between a globe moving in circles and the stars behaving similarly in a spherical universe inspired later Greek scholars, including ARISTOTLE, to seek and ultimately find physical and mathematical evidence to reinforce the theory of the world as an orb.

Attributed to the Pythagoreans is the discovery that simple whole number ratios of string lengths produce harmonious tones when plucked, probably the first time a physical law had been mathematically expressed.

Numerous other discoveries such as ‘the sum of a triangle’s angles is the equal to two right angles’ and ‘the sum of the interior angles in a polygon of n-sides is equal to 2n-4 right angles’ were made. They also discovered irrational numbers, from the realisation that the square root of two cannot be expressed as a perfect fraction. This was a major blow to the Pythagorean idea of perfection and according to some, attempts were made to try to conceal the discovery.

PLATONIC SOLIDS

To the Pythagoreans, the fifth polyhedron had monumental significance. Outnumbering by one the number of recognized elements, the dodecahedron was considered to represent the shape of the universe. 
A omerta, or code of silence, was imposed regarding the dodecahedron and divulging this secret to outsiders could mean a death penalty.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

PROTAGORAS of ABDERA (c.480 – c.411 BCE)

Drawing of PROTAGORAS

PROTAGORAS

‘Of all things the measure is Man, of the things that are, that they are, and of the things that are not, that they are not’
‘About the gods, I am not able to know whether they exist or do not exist, nor what they are like in form; for the factors preventing knowledge are many: the obscurity of the subject, and the shortness of human life’

A contemporary of Socrates
In 415 BCE he was forced to flee Athens because his works were condemned for impiety

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

PLATO (c.427 – c.347 BCE)

387 BCE – Athens

‘The safest general characterisation of the European philosophical tradition is that it consists of a series of footnotes to Plato’

So said the English mathematician and philosopher Alfred North Whitehead (1861-1947)

A pupil of Socrates, Plato was introduced to the notion of ‘reality’ being distorted by human perceptions, which became important in his approach to science and to metaphysics. Socrates taught a method of thinking that elucidated truth though a series of questions and answers. The Socratic method was to ask for definitions of familiar concepts like ‘justice’ and ‘courage’, and then probe the definition by asking a series of questions. His intention was to lead people to start to contradict themselves and in so doing uncover any weaknesses in the initial definition. Socratic dialogue is thus often better at revealing ignorance than producing answers. Socrates was convinced that the wisest people are those who are aware of how little they know.
Socrates fell foul of a newly elected democratic government and was put on trial for allegedly corrupting the youth of Athens with his rebellious ideas. He was sentenced to death and elected to drink hemlock rather than argue in favour of a fine or accepting the offer of help to escape. His rational for his obstinacy was that he believed that doing harm damaged one’s soul. As the soul survives death then it would be better to die.

PHILOSOPHY

Plato determined to reveal a world of certainty that existed beyond the world of change and decay. The physical world we see is merely the world of ‘becoming’ – a poor copy of the ‘real’ world of the Forms which can only ever be grasped through thought.
After PYTHAGORAS and HERACLITUS, most Greek philosophers believed that knowledge had to be as stable and fixed as the certainties of mathematics, kept safe from Heraclitan change and from sceptical relativism.
Knowledge could only come through thought and although observation was useful, it was an inferior and misleading way of understanding the world and the place of human beings within it. Such a view helps to explain why it is that the ancient Greeks invented extremely sophisticated mathematics, astronomy and philosophy but little in the way of technology.

Plato produced nearly all the central questions for philosophy in epistemology, metaphysics, ethics, politics and aesthetics.
Central to Plato’s thinking is that people should seek virtue studying what he called the Good, a non-physical absolute concept that never changes. If you know Good, you will live well because your thoughts and desires will automatically be shaped by that knowledge.

During the decade of his travels after the execution of Socrates, Plato wrote his first group of ‘dialogues’ – which include the ‘Euthyphro‘, ‘Apology’, the ‘Crito’, ‘Phaedo‘ – concerning the trial and death of Socrates.
Further accounts of Socrates debates with friends on various subjects are found in other works; ‘Charmides’ (temperance); ‘Laches’ (courage); ‘Lysis’ (friendship); ‘Hippas Minor’, ‘Hippas Major’, ‘Gorgias’, ‘Ion‘, and ‘Protagoras’ (ethics and education). In his plays, Plato used Socrates as a character, bringing his mentor back from the grave and throwing light on his concepts. In Gorgias, Plato portrays Socrates confronting Polus, or the sophist Callicles, who holds that immoral acts can bring the greatest amount of pleasure, measuring actions in terms of their immediate material outcome. Socrates disagrees. Whatever the immediate pleasure, he says, immorality will damage the soul.

Opposing DEMOCRITUS, Plato believed that all substances are composed of one kind of matter, possessing the qualities of form and spirit. He accepted the Greek notion, first suggested by EMPEDOCLES in the fifth century BCE, that matter was made up of mixtures of the four elements – earth, water, air or fire. Because these four are only fundamental forms of the single type of matter, they cannot be related to any idea of ‘elements’ as understood by modern science – they could be transmuted into each other. Different substances, although composed of matter would have different properties due to the differing amounts of the qualities of form and spirit. Thus a lump of lead is made of the same type of matter (fundamental form) as a lump of gold, but has a different aggregation of constituents. Neither lead nor gold would contain much spirit – not as much as air, say, and certainly not as much as God, who is purely spiritual.

399 BCE on the execution of SOCRATES, Plato leaves Athens in disgust.

387 BCE Returns to Athens. Plato founds his academy (‘ Let no one enter here who is ignorant of geometry ‘) – a bastion of intellectual achievement until its closure on the orders of the emperor Justinian in CE 529.

Plato’s ‘Theory of Forms’ consisted of the argument that Nature, as seen through human eyes, is merely a flawed version of true ‘reality’, or ‘forms’.

Plato argued that everything we see and call beautiful in some way resembles the form of Beauty. Two people independently come to the conclusion that a person or an object is beautiful because they both recognise the form of Beauty. In a similar way, everything that we see as ‘Just’ resembles the form of ‘Justice’. Disputes about the rightness of actions then depend on how well the outcome will conform to the form of Good. For a person to act justly requires that while they seek the form of Good, they keep the three parts of their personality in balance. The person needs wisdom, which comes from reason; courage, which comes from the spirited part of man; and self-control, which rules the passions.

In ‘The Republic’ Plato expands the idea that if you educate a person so that he can see that a particular action is not good for them, then they will not perform that action. This knowledge will enable them to make good decisions and to rule wisely, hence the idea of a philosopher king who has mastered the discipline of ‘dialectic’ and studied the hierarchy of Forms. The society is organised into a rigid hierarchy of workers, soldiers and rulers who all know their relative positions and there is a communism of property and family. The rulers have totalitarian powers and a harmonious communal life can only be achieved at the expense of individual freedoms.
Plato’s educational syllabus in ‘The Republic’ is based on Spartan methods – selfless dedication to the welfare of the State is essential.

SCIENCE

Plato encountered the Pythagoreans in Croton, who became a major influence. For Plato, there had always existed an eternal, underlying mathematical form and order to the universe, and what humans saw were merely imperfect glimpses of it, usually corrupted by their own irrational perceptions and prejudices about the way things ‘are’. Consequently, for Plato, the only valid approach to science was a rational mathematical one, which sought to establish universal truths irrespective of the human condition. This has strongly impacted on modern science; for example, arithmetic calculations suggesting that future discoveries would have particular properties has led to the naming of unknown elements in DMITRI MENDELEEV‘s first periodic table.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

<< top of page

ARISTOTLE (c.384 – c.322 BCE)

335 BCE – Athens

Bust of ARISTOTLE

ARISTOTLE

384 BCE – Born in the Greek colony of Stagira. The son of Nicomachus, court physician to the king of Macedonia
367 BCE – Enters Plato’s Academy in Athens
347 BCE – On Plato’s death Speusippus succeeds Plato as head of the Academy. Aristotle leaves the Academy for Lesbos
342 BCE – Becomes tutor to the young Alexander (the Great), son of Phillip of Macedon
335 BCE – Returns to Athens and founds the Lyceum
321 BCE – Accused of impiety, returns to Chalcis where he dies a year later

Aristotle reinforced the view espoused by PYTHAGORAS that the earth is spherical. The arc shaped shadow of the earth cast upon the moon during a lunar eclipse is consistent with this view. He also noted that when traveling north or south, stars ‘move’ on the horizon until some gradually disappear from view.

Proposing that there was no infinity and no void he accepted the notion of the earth at the centre of the universe, with the moon, planets, sun and stars all orbiting around it in perfect circles.
The universe existed as beautiful spheres surrounding the Earth, placed at the centre of the cosmos. This system was later refined by the Alexandrian astronomer Ptolemy and become the dominant philosophy in the Western world.

Explaining why the heavens rotate in perfect, uniform order, with none of the disturbances associated with earthly elements; he described the fifth element added to the traditional four, ‘Aether‘, as having a naturally circular motion. Everything beyond the moon was regulated by aether, explaining both its perfect movement and stability, while everything below it was subject to the laws of the four other elements.

Aristotle rejected the ideas of zero and infinity, hence he had explained away Zeno’s paradoxes – Achilles runs smoothly past the tortoise because the infinite points are simply a figment of Zeno’s imagination; infinity was just a construct of the human mind.
By rejecting zero and infinity, Aristotle denied the atomists’ idea of matter existing in an infinite vacuum, infinity and zero wrapped into one.
In contrast to the theory of atoms, like Plato, Aristotle believed that matter is composed of four elements ( Ignis, Aqua, Aer and Terra ) with differing qualities ( hot, wet, cold, dry )

[ Fire – hot + dry ; Water – cold + wet ; Air – hot + wet ; Earth – cold + dry ]

He believed that the qualities of heat, cold, wetness and dryness were the keys to transformation, each element being converted into another by changing one of these two qualities to its opposite.

Agreeing that things were composed of a single, primal substance (prote hyle) that was too remote and unknowable, he accepted EMPEDOCLES elements as intermediaries between the imponderable and the tangible world, concealing the complications behind a philosophy of matter.

The four elements always sought to return to their ‘natural place’. Thus a rock, for example, would drop to the earth as soon as any obstacles preventing it from doing so were removed – because ‘earth’ elements, being denser and heavier, would naturally seek to move downwards towards the centre of the planet. Water elements would float around the surface, air would rise above that and fire would seek to rise above them all, explaining the leaping, upward direction of flames.

Although the Aristotelian view of matter has been undermined as experiments proved that neither air nor water are indivisible; today, scientists define matter as existing in four phases, solid, liquid, gas and plasma.

MATTER (hyle); FORM (morphe); CAUSE; PURPOSE;

The place where his ideas converge with Plato’s is that for Aristotle, the pinnacle of the tower of superiority is the Good. According to Aristotle, all aims eventually lead to the Good, not necessarily of the individual but of humankind. Humans by nature are social and moral and everyone is part of a group, a family, village, town or city-state. There is no place for individualism or freethinkers, as without the happiness of the group then the individual cannot be happy.
The consequence of this emphasis on the community as opposed to the individual is hierarchy and subordination and as a result slavery was a very normal part of a well-ordered society.

  • Matter is itself only one component of the world – others being form and spirit. There are different sorts of living being in the world.
    Human beings possess immortal souls.
    He believed that there is in living creatures a fundamental vital principle, a ‘life force’, which distinguishes them from non-living material. The gods breathed this vital principle into living things, and thereby gave them their life – ( nous – spontaneous generation ).

The soul is governed by reason, spirit and appetite.
‘All human actions have one or more of these seven causes: chance, nature, compulsion, habit, reason, passion, and desire’ ( source )

  • Forms are incorporated in individual particulars as potentiality.
    All particular acorns possess the form of the potential oak tree.

Although Aristotle was a pupil at Plato’s Academy for almost twenty years, the two great thinkers were diametrically opposed on a number of subjects; he criticised Platonic forms for being impossibly transcendent and mystical.

Aristotle pursued his ideas unrestricted by Socratic theories that non-physical forms such as Truth and Beauty were the keys to understanding.

  • Four Causes – efficient, formal, material, final – (agent, form, matter, goal). – The ‘Timaeus’ – ( Plato’s work in which the chief speaker is encouraged to provide his account of the origins of the universe.)

  • ‘Action exists not in the agent but in the patient’
    To study a situation, or an action, Aristotle would categorise it into a series of subordinate and superior aims.

 

MOTION

  • Motion of Place – A to B

  • Motion of Quantity – change in amount

  • Motion of Quality – green apples turning red or from sour to sweet

 

Aristotle could explain why a rock, when thrown, would travel upwards through the air first before heading downwards, rather than straight down towards the earth. This was because the air, seeking to close the gap made by the invasion of the rock, would propel it along until it lost its horizontal speed and it tumbled to the ground.

Such notions made a lasting impact for the next two thousand years, if only by slowing down progress due to their unchallenged acceptance.

Some of Aristotle’s biology was faulty, such as defining the heart, not the brain as the seat of the mind.

 

Aristotle’s model of ‘the hydrologic cycle’ is uncannily close to the ideas we have today. The Sun’s heat changes water into air ( as defined as ‘elements’ by EMPEDOCLES ). Heat rises, so the heat in this air pulls the air up to the skies ( modern explanations of the nature of heat give a fuller understanding of the mechanisms involved ). The heat then leaves the vapour, which thus becomes progressively more watery again, and this process is marked by the formation of a cloud. The positive feedback of the increased ‘wateriness’ of the mixture in the cloud driving away its opposite ( the ‘heat’ ) and causing the cloud to become colder and shrink results in restoration of the true wateriness of the water, which falls as rain or, if the cloud is now cold enough, as hail or snow.

Aristotle was one of the first to attempt a methodical classification of animals; in ‘Generation of Animals’ he used means of reproduction to differentiate between those animals which give birth to live young and those which lay eggs, a system which is the forerunner of modern taxonomy. He noted that dolphins give birth to live young who were attached to their mothers by umbilical cords and so he classified dolphins as mammals.

Based on the Pythagorean universe, the Aristotelian cosmos had the planets moving in crystalline orbs.
Since there is no infinity, there cannot be an endless number of spheres; there must be a last one. There was no such thing as ‘beyond’ the final sphere and the universe ended with the outermost layer.
With no infinite and no void, the universe was contained within the sphere of fixed stars. The cosmos was finite in extent and entirely filled with matter.
The consequence of this line of reasoning, accounting for Aristotle’s philosophy enduring for two millennia was that this system proved the existence of God.

The heavenly spheres are slowly spinning in their places, making a divine music that suffuses the cosmos. The stationary earth cannot be the cause of that motion, so the innermost sphere must be moved by the next sphere out, which, in its turn must be moved by by its larger neighbour, and on and on. With a finite number of spheres, something must be the ultimate cause of motion of the final sphere of fixed stars. This is the Prime Mover.
Christianity came to rely on Aristotle’s view of the universe and this proof of God’s existence.
Atomism became associated with atheism.

The ideas of Aristotle were picked up by the twelfth century Andalusian philosopher Abu al-Walid Muhammad ibn Ahmed ibn Rushd (AVERROES) and were later adopted by the medieval philosopher THOMAS AQUINAS in the thirteenth century; whose concept of Natural Law is the basis of much thinking in the Christian world.

Aristotle had greater influence on medieval scholastic thought than Plato, whose rediscovery in the Italian renaissance influenced Petrarch, Erasmus, Thomas More and other scholars to question the dogmas of scholasticism.

Aristotle’s work in physics and cosmology dominated Western thought until the time of GALILEO and NEWTON, when much of it was subsequently refuted, though his work still underpins both Christian and Islāmic philosophy. His importance lies as much in his analytical method as in the conclusions he reached.

 

Aristotle expanded Plato’s concept of ‘virtue’ by dividing virtues into two groups, the 12 ‘moral’ and 9 ‘intellectual’ virtues, believing that each lay between the non-virtuous extremes of excess and deficiency.

Deficiency Virtue Excess
Cowardice Courage Rashness
Licentiousness (disregarding convention, unrestrained) Temperance (restraint or moderation) Insensibility (indifference)
Illiberality (meanness) Liberality (generosity) Prodigality (wasteful, extravagant)
Pettiness Magnificence Vulgarity
Humble-mindedness High-mindedness Vanity
Lack of ambition Proper ambition Over ambition
Irascibility (easily angered) Patience Lack of spirit
Understatement Truthfulness Boastfulness
Boorishness Wittiness Buffoonery
Cantankerousness Friendliness Obsequiousness
Shamelessness Modesty Shyness
Malicious enjoyment Righteous indignation Envy/spitefulness

His intellectual virtues consisted of :

art    scientific knowledge    prudence    intelligence    wisdom    resourcefulness    understanding    judgment    cleverness

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

EUCLID (c.330 – c.260 BCE)

Fourth century BCE – Alexandria, Egypt

Euclid

EUCLID

  1. A straight line can be drawn between any two points

  2. A straight line can be extended indefinitely in either direction

  3. A circle can be drawn with any given centre and radius

  4. All right angles are equal

  5. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines will eventually meet (or, parallel lines never meet)

These five postulates form the basis of Euclidean geometry. Many mathematicians do not consider the fifth postulate (or parallel postulate) as a true postulate, but rather as a theorem that can be derived from the first four postulates. This ‘parallel’ axiom means that if a point lies outside a straight line, then only one straight line can be drawn through the point that never meets the other line in that plane.

The ideas of earlier Greek mathematicians, such as EUDOXUS, THEAETETUS and PYTHAGORAS are all evident, though much of the systematic proof of theories, as well as other original contributions, was Euclid’s.

The first six of his thirteen volumes were concerned with plane geometry; for example laying out the basic principles of triangles, squares, rectangles and circles; as well as outlining other mathematical cornerstones, including Eudoxus’ theory of proportion. The next four books looked at number theory, including the proof that there is an infinite number of prime numbers. The final three works focused on solid geometry.

Virtually nothing is known about Euclid’s life. He studied in Athens and then worked in Alexandria during the reign of Ptolemy I

Euclid’s approach to his writings was systematic, laying out a set of axioms (truths) at the beginning and constructing each proof of theorem that followed on the basis of proven truths that had gone before.

Elements begins with 23 definitions (such as point, line, circle and right angle), the five postulates and five ‘common notions’. From these foundations Euclid proved 465 theorems.

A postulate (or axiom) claims something is true or is the basis for an argument. A theorem is a proven position, which is a statement with logical constraints.

Euclid’s common notions are not about geometry; they are elegant assertions of logic:

  • Two things that are both equal to a third thing are also equal to each other

  • If equals are added to equals, the wholes are equal

  • If equals are subtracted from equals, the remainders are equal

  • Things that coincide with one and other are equal to one and other

  • The whole is greater than the part

One of the dilemmas that he presented was how to deal with a cone. It was known that the volume of a cone was one-third of the volume of a cylinder that had the same height and base diameter. He asked if you cut through a cone parallel to its base, would the circle formed on the top section be the same size as that on the bottom of the new, smaller cone?

If it were, then the cone would in fact be a cylinder and clearly that was not true. If they were not equal, then the surface of a cone must consist of a series of steps or indentations.

NON-EUCLIDEAN MATHEMATICS

Statue of Janus Bolyai

Janus Bolyai

The essential weakness in Euclidean mathematics lay in its treatment of two- and three- dimensional figures. This was examined in the nineteenth century by the Romanian mathematician Janus Bolyai. He attempted to prove Euclid’s parallel postulate, only to discover that it is in fact unprovable. The postulate means that only one line can be drawn parallel to another through a given point, but if space is curved and multidimensional, many other parallel lines can be drawn. Similarly the angles of a triangle drawn on the surface of a ball add up to more than 180 degrees.
CARL FRIEDRICH GAUSS was perhaps the first to ‘doubt the truth of geometry’ and began to develop a new geometry for curved and multidimensional space. The final and conclusive push came from BERNHARD RIEMANN, who developed Gauss’s ideas on the intrinsic curvature of surfaces.

Riemann argued that we should ignore Euclidean geometry and treat each surface by itself. This had a profound effect on mathematics, removing a priori reasoning and ensuring that any future investigation of the geometric nature of the universe would have to be at least in part, empirical. This provides a mechanism for examinations of multidimensional space using an adaptation of the calculus.

However, the discoveries of the last two hundred years that have shown time and space to be other than Euclidean under certain circumstances should not be seen to undermine Euclid’s achievements.

Moreover, Euclid’s method of establishing basic truths by logic, deductive reasoning, evidence and proof is so powerful that it is regarded as common sense.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

ARCHIMEDES (c.287 – c.212 BCE)

Third Century BCE – Syracuse (a Greek city in Sicily)

‘Archimedes’ Screw – a device used to pump water out of ships and to irrigate fields’

Archimedes investigated the principles of static mechanics and pycnometry (the measurement of the volume or density of an object). He was responsible for the science of hydrostatics, the study of the displacement of bodies in water.

Archimedes’ Principle

Buoyancy – ‘A body fully or partially immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body’
The upthrust (upward force) on a floating object such as a ship is the same as the weight of water it displaces. The volume of the displaced liquid is the same as the volume of the immersed object. This is why an object will float. When an object is immersed in water, its weight pulls it down, but the water, as Archimedes realised, pushes back up with a force that is equal to the weight of water the object pushes out-of-the-way. The object sinks until its weight is equal to the upthrust of the water, at which point it floats.
Objects that weigh less than the water displaced will float and objects that weigh more will sink. Archimedes showed this to be a precise and easily calculated mathematical principle.

 
 

Syracuse’s King Hiero, suspecting that the goldsmith had not made his crown of pure gold as instructed, asked Archimedes to find out the truth without damaging the crown.

Archimedes first immersed in water a piece of gold that weighed the same as the crown and pointed out the subsequent rise in water level. He then immersed the crown and showed that the water level was higher than before. This meant that the crown must have a greater volume than the gold, even though it was the same weight. Therefore it could not be pure gold and Archimedes thus concluded that the goldsmith had substituted some gold with a metal of lesser density such as silver. The fraudulent goldsmith was executed.

Archimedes came to understand and explain the principles behind the compound pulley, windlass, wedge and screw, as well as finding ways to determine the centre of gravity of objects.
He showed that the ratio of weights to one another on each end of a balance goes down in exact mathematical proportion to the distance from the pivot of the balance.

Perhaps the most important inventions to his peers were the devices created during the Roman siege of Syracuse in the second Punic war.

He was killed by a Roman soldier during the sack of the city.

 
 
 
 

(image source)

Π The Greek symbol pi (enclosed in a picture of an apple) - Pi is a name given to the ratio of the circumference of a circle to the diameterPi

‘All circles are similar and the ratio of the circumference to the diameter of a circle is always the same number, known as the constant, Pi’

Pi-unrolled-720.gif

 
 

The Greek tradition disdained the practical.  Following PLATO the Greeks believed pure mathematics was the key to the perfect truth that lay behind the imperfect real world, so that anything that could not be completely worked out with a ruler and compass and elegant calculations was not true.

In the eighteenth century CE the Swiss mathematician LEONHARD EULER was the first person to use the letter  Π , the initial letter of the Greek word for perimeter, to represent this ratio.

The earliest reference to the ratio of the circumference of a circle to the diameter is an Egyptian papyrus written in 1650 BCE, but Archimedes first calculated the most accurate value.

He calculated Pi to be 22/7, a figure which was widely used for the next 1500 years. His value lies between 3 1/2 and 3 10/71, or between 3.142 and 3.141 accurate to two decimal places.

 

‘The Method of Exhaustion – an integral-like limiting process used to compute the area and volume of two-dimensional lamina and three-dimensional solids’

Archimedes realised how much could be achieved through practical approximations, or, as the Greeks called them, mechanics. He was able to calculate the approximate area of a circle by first working out the area of the biggest hexagon that would fit inside it and then the area of the smallest that would fit around it, with the idea in mind that the area of the circle must lie approximately halfway between.

By going from hexagons to polygons with 96 sides, he could narrow the margin for error considerably. In the same way he worked out the approximate area contained by all kinds of different curves from the area of rectangles fitted into the curve. The smaller and more numerous the rectangles, the closer to the right figure the approximation became.

This is the basis of what thousands of years later came to be called integral calculus.
Archimedes’ reckonings were later used by Kepler, Fermat, Leibniz and Newton.

In his treatise ‘On the Sphere and the Cylinder’, Archimedes was the first to deduce that the volume of a sphere is 4/3 Pi r3  where r  is the radius.
He also deduced that a sphere’s surface area can be worked out by multiplying that of its greatest circle by four; or, similarly, a sphere’s volume is two-thirds that of its circumscribing cylinder.

Like the square and cube roots of 2, Pi is an irrational number; it takes a never-ending string of digits to express Pi as a number. It is impossible to find the exact value of Pi – however, the value can be calculated to any required degree of accuracy.
In 2002 Yasumasa Kanada (b.1949) of Tokyo University used a supercomputer with a memory of 1024GB to compute the value to 124,100,000,000 decimal places. It took 602 hours to perform the calculation.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

Related sites
  • Pi (math.com)

ASTROLOGY

– throughout the Middle Ages, astrology and astronomy were closely linked in both the Western and the Arabic worlds.
Although astrology was used for prediction, pre-modern astrology required a substantial command of mathematics and an informed astronomical knowledge.

PTOLEMY – ‘ The Almagest ’ how the planets move; ‘ Tetrabiblos ’ what effect the qualities of the planets (Mars – hot & dry, Moon – cold & wet [affect on the tides]) and their relative positions will have.

Belief that the influence of the planets may have an effect on earthly health and other matters (disease and character traits).

Tables of positions of planets became developed from the Babylonian originals in the Islāmic world.

Alphonsine tables produced for King Alphonso X of Castile in 1275.

Prognostication repeatedly condemned by the Church as influence of the planets denies the concept of free will.

Refutation of astrology is difficult owing to its complexity.

NEXT buttonNEXT

CLAUDIUS PTOLEMY (c.90-168)

(NOT to be confused with the royal dynasty of the Ptolemys)

c.150 – Alexandria, Egypt

‘The Earth is at the centre of all the cosmos’

This erroneous belief dominated astronomy for 14 centuries.

‘The Earth does not rotate; it remains at the centre of things because this is its natural place – it has no tendency to go either one way or the other. Around it and in successively larger spheres revolve the Moon, Mercury, Venus, the Sun, Mars, Jupiter and Saturn, all of them deriving their motion from the immense and outermost spheres of fixed stars’. Ptolemy wrote in the thirteen-volume Almagest (Arabic for ‘The Greatest’), in which he synthesised the work of his predecessors. It provided a definitive compilation of all that was known and accepted in the field of astronomy up to that point.

Almagest’s eminence, importance and influence can only be compared with Euclid’s Elements. A major part of Almagest deals with the mathematics of planetary motion. Ptolemy explained the wandering of the planets by a complicated system of cycles and epicycles. Starting from the Aristotelian notion that the earth was at the centre of the universe, with the stars and the planets rotating in perfect circles around it, the Ptolemaic system argued for a system of ‘deferents’, or large circles, rotating around the earth, and eighty epicycles, or small circles, which circulated within the deferents. He also examined theories of ‘movable eccentrics’. These proposed just one circle of rotation, with its centre slightly offset from the earth, as well as ‘equants’ – imaginary points in space that helped define the focal point of the rotation of the celestial bodies. Ptolemy’s texts were written with such authority that later generations struggled for a thousand years to convincingly challenge his theories and they remained the cornerstone of Western and Arab astronomy until the sixteenth century.

Ptolemy’s theory was challenged by COPERNICUS and demolished by KEPLER. Ptolemy supported Eratosthenes’ view that the Earth is spherical.

Ptolemy’s other major text is his Tetrabiblos, a founding work on the then science of astrology.

Despite that Ptolemy’s ideas of a geocentric universe have been shown to be erroneous by modern researchers it must be remembered that at the time the observable phenomena would support this view of the cosmos. Without a more informed understanding of the mechanisms involved it can appear that heavenly bodies do in fact move according to the Ptolemaeic model and mathematical evidence was available to provide verification and vindication.

 Medieval Astronomy from Melk Abbey Credit: Paul Beck (Univ. Vienna), Georg Zotti (Vienna Inst. Arch. Science) Copyright: Library of Melk Abbey, Frag. 229  Explanation: Discovered by accident, this manuscript page provides graphical insight to astronomy in medieval times, before the Renaissance and the influence of Nicolaus Copernicus, Tycho de Brahe, Johannes Kepler, and Galileo. The intriguing page is from lecture notes on astronomy compiled by the monk Magister Wolfgang de Styria before the year 1490 at Melk Abbey in Austria. The top panels clearly illustrate the necessary geometry for a lunar (left) and solar eclipse in the Earth-centered Ptolemaic system. At lower left is a diagram of the Ptolemaic view of the solar system and at the lower right is a chart to calculate the date of Easter Sunday in the Julian calendar. Text at the upper right explains the movement of the planets according to the Ptolemaic system. The actual manuscript page is on view at historic Melk Abbey as part of a special exhibition during the International Year of Astronomy.

Library of Melk Abbey, Frag. 229

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

NEXT buttonTHE STARS

Related sites

THE MEDIEVAL ARAB SCIENTISTS

A great deal of what we know about the ancient world and its scientific ideas has come to us from documents which were translated from ancient Greek or other ancient languages into Arabic, and later from Arabic into European languages. The material reached the Arab world in many cases through the Roman empire in the East, Byzantium, which survived until 1453, almost a thousand years after the fall of Rome, during the period known in Europe as the Dark Ages.
During this time the consolidating influence of Islāmic religion saw Arab Muslims begin to build an empire that was to stretch across the Middle East and across North Africa into Spain. At the heart of the Islāmic world the caliphs ruled in Baghdad. Arab scientists sowed the seeds that would later be reaped in the scientific revolution of the seventeenth century, especially under the Abbasid dynasty during the caliphate of Harun al-Rashid and his son al-Mamun, and the Middle East became the intellectual hub of the World.

depiction of early islamic scholars at work at various scientific investigations

In the ninth century, at the House of Wisdom – a mixture of library, research institute and university – scholars worked to translate the great works of the GREEK thinkers. Muslim scholars of this golden age made important and original contributions to mathematics and astronomy, medicine and chemistry. They developed the ASTROLABE, which enabled astronomers to measure the position of the stars with unparalleled accuracy.Astrology & Astronomy in Iran and Ancient Mesopotamia: Astrolabe: An ancient astronomical instrument
In medicine they made the first serious studies of drugs and advanced surgery. A number of mathematicians, including Habash al-Hasib (‘he who calculates’), Abul’l-Wafa al-Buzjani, Abu Nasr al-Iraq and Ibn Yunus formulated trigonometry (including all six trig functions [ sin, cosec, cos, sec, tan, and cot ]) at a level far above that introduced by the Greek astronomer-mathematician HIPPARCHUS in the second century BCE.
It is largely through such efforts that Greek ideas were preserved through the DARK AGES.

more

Eight hundred years before COPERNICUS, a model of the solar system was advanced with the Earth as a planet orbiting the Sun along with other planets.

A few centuries later this idea fell into disfavour with the early Christian Church, which placed mankind at the centre of the universe in a geo-centric model. The alternative teaching would be deemed heresy punishable by death and it would not be until the seventeenth century that the work of GALILEO, KEPLER and NEWTON gave credence to the ideas revitalized by Copernicus in 1543.

It is worth noting that even to-day at least half the named stars in the sky bear Arabic names (Aldebaran and Algol amongst others) and many terms used in astronomy, such as Nadir and Azimuth, are originally Arabic words.

 The Ulugh Beg Observatory in Samarkand, Uzbekistan

The elaborate observatory established by the Ulugh Begg in Samarkand in the fifteenth century appeared to function with a dictum meant to challenge PTOLEMY’s geocentric picture of the universe sanctioned by the Church in Europe. Arabic scholars had access to the early teachings of ARISTARCHUS, the astronomer from Samos of the third century BCE. (referred to by Copernicus in the forward of an early draft of De Revolutionibus, although omitted from the final copy)

NEXT buttonNEXT

IBN SINA (AVICENNA) (980-1037)

‘al Qann fi al-Tibb’ (The Canon of Medicine), also ‘ The Book of the Remedy

Avicenna lived under the Sammarid caliphs in Bukhara. He identified different forms of energy – heat, light and mechanical – and the idea of a force.

drawing of Ibn Sina ©

AVICENNA

Before GALEN, scientists describing nature followed the old Greek traditions of giving the definitions and following them up with the body of logical development. The investigator was then obliged merely to define the various types of ‘nature’ to be found. With Galen this procedure was changed.

Instead of hunting for these natures and defining more and more of them, reproducing ARISTOTLE’s ideas, AVICENNA, a Persian physician, planned inductive and deductive experimental approaches to determine the conditions producing observable results.

His tome surveyed the entire field of medical knowledge from ancient times up to the most up to date Muslim techniques. Avicenna was the first to note that tuberculosis is contagious; that diseases can spread through soil and water and that a person’s emotions can affect their state of physical health. He was the first to describe meningitis and realize that nerves transmit pain. The book also contained a description of 760 drugs. Its comprehensive and systematic approach meant that once it was translated into Latin in the twelfth century it became the standard medical textbook in Europe for the next 600 years.

Arabic Canon of Medicine by Avicenna 1632. Many physicians in the Islamic world were outstanding medical teachers and practitioners. Avicenna (980-1037 CE) was born near Bokhara in Central Asia. Known as the 'Prince of Physicians', his Canon of Medicine (medical encyclopedia) remained the standard text in both the East and West until the 16th century and still forms the basis of Unani theory and practice today. Divided into five books, this opening shows the start of the third book depicting diseases of the brain.

Arabic Canon of Medicine by Avicenna 1632

Avicenna thought of light as being made up of a stream of particles, produced in the Sun and in flames on Earth, which travel in straight lines and bounce off objects that they strike.

A pinhole in a curtain in a darkened room causes an inverted image to be projected, upside-down, onto a wall opposite the curtained window. The key point is that light travels in straight lines. A straight line from the top of a tree some distance away, in a garden that the window of the camera obscura faces onto – passing through the hole in the curtain – will carry on down to a point near the ground on the wall opposite. A straight line from the base of the tree will go upwards through the hole to strike the wall opposite near the ceiling. Straight lines from every other point on the tree will go through the hole to strike the wall in correspondingly determined spots, the result is an upside-down image of the tree (and of everything else in the garden).

He realized that refraction is a result of light traveling at different speeds in water and in air.

He used several logical arguments to support his contention that sight is not a result of some inner light reaching outward from the eye to probe the world around it, but is solely a result of light entering the eye from the world outside – realizing that ‘after-images’ caused by a bright light will persist when the eyes are closed and reasoning that this can only be the result of something from outside affecting the eyes. By effectively reversing the extro-missive theory of Euclid, he formulated the idea of a cone emanating from outside the eye entering and thus forming an image inside the eye – he thus introduced the modern idea of the ray of light.

The idea which was to have the most profound effect on the scientific development of an understanding of the behaviour of light was the thought of the way images are formed on a sunny day by the ‘camera obscura’.

AL HAZEN (c.965-1039)

Born in Basra and working in Egypt under al-Hakim, Abu Ali al-Hassan ibn al-Haytham was one of the three greatest scientists of Islam (along with al-Biruni and ibn-Sina). He explained how vision works in terms of geometric optics and had a huge influence on Western science. He is regarded as one of the earliest advocates of the scientific method.

The mathematical technique of ‘casting out of nines’, used to verify squares and cubes, is attributed to al-Hazen.

Al-Hazen dissented with the J’bir Ayam hypothesis of transmutation, thus providing two different strands for Alchemy in Europe from the Islāmic world.

diagram explaining the working of the eye

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

 

NEXT buttonMEDICINE

<< top of page

OMAR KHAYYAM (c.1048–1131)

In the service of the Kurdish-Turkish Sultan Salah al-Din ibn Ayyub (Saladin صلاح الدين يوسف بن أيوب‎ ), the nemesis of Richard the Lionheart during the second crusade, there was published a definitive treatise by Khayyām on algebra in which he classified algebraic equations up to the third degree and showed how geometric solutions to the equations could be obtained.

Image depicting OMAR KHAYYAM

Ironically, the source of Khayyām’s most enduring legacy is neither his mathematics nor his science but rather his poetry. The Rubaiyat, a translation, or recomposition, published initially in 1859 by the British poet Edward Fitzgerald, presents his work in a series of melancholic ruminations concerning the irreversibility of fate and the fleeting nature of life.

One explanation of the decline of science in Islāmic civilization, which began in the late fifteenth century, is the general fatalism that pervaded Islāmic culture, as revealed in the melancholia and pathos of Khayyām’s quatrains describing life continuing among the ruins of ancient grandeur.
Another explanation is the emergence in twelfth century Baghdad of an intellectual movement spearheaded by the fundamentalist al-Ghazali, which favoured faith and dogma over reason and direct evidence.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTHE DARK AGES

THE DARK AGES

THE THIRTEENTH CENTURY

Ideas on ‘impetus’ and the motion of the heavenly spheres.

Diversity of opinion on what keeps the heavenly orbs moving.

The recipe literature – craft manuals outlining recipes for manufacture of alchemical materials. For example, glass production had died out in the Latin West, but remained important in the Arab world.

ROGER BACON suggests that alchemical power can surpass nature (human artifice may exceed nature, i.e. technology), compared with Aristotle, who suggests that artifice may only mimic nature, or complete that which nature has failed to finish.

Suma Perfectionis’, Gaber – Latin Franciscan text (passed off as Arabic). Underpinned by the sulfur-mercury theory and by Aristotle’s ‘minima naturalia’ (smallest of natural things)– the idea of a minimum amount of matter to hold a form – hence a smallest particle of any given substance. This differs from atomism but the ideas were not developed by Aristotle.

Thus, in the middle ages came the belief that metals are created by the coalescence of minima of the metals.
Particles may be tightly or lightly packed (density). Matter may be contaminated.
Noble metals (gold) are tightly packed small particles, unaffected by fire or corrosion.
Lead turns to powder (oxidised) in fire as it is composed of larger, less tightly packed particles.
Sublimation is explained by smaller, lighter particles being driven upward by fire, and so on.

THE FOURTEENTH CENTURY

Texts become more secret, written in code and disguised. Latin texts are written in such a style so as to appear to be derived from ARABIC.

1317 – The Pope outlaws transmutation.

Moral questions: ‘is alchemical gold as valuable as real gold?’

Quintessences’: the refined essences of metals.

The discovery that lead cannot be turned to gold has important consequences. It is a strong indication that some substances are truly permanent and indestructible.

NEXT buttonALCHEMY

NICOLAUS COPERNICUS (1473-1543)

1543 – Poland

‘The Sun is at the centre of the solar system, fixed and immobile, and planets orbit around it in perfect circles in the following order: Mercury, Venus, Earth with its moon, Mars, Jupiter and Saturn’

diagram of the heliocentric Copernican system

The heliocentric Copernican system

The Copernican system defied the dogma that the Earth stood still at the centre of the universe – a concept that dated back to ARISTOTLE, which had been given observational legitimacy by PTOLEMY and authority by Christendom – and set forth a new theory of a Sun centered universe. Why would God create a hugely complicated system of equants, epicycles and eccentrics, as Ptolemy had used to explain planetary motion around the Earth, when it would be much more simple and graceful to have them all revolving around the Sun?

“Eight hundred years before Copernicus, a model of the solar system was advanced with the Earth as a planet orbiting the Sun along with other planets”
A few centuries later this idea fell into disfavour with the early Christian Church, which placed mankind at the centre of the universe in a geo-centric model. The alternative teaching would be deemed heresy punishable by death and it would not be until the seventeenth century that the work of GALILEO, KEPLER and NEWTON gave credence to the ideas revitalized by Copernicus in 1543.

Not only did Copernicus place the Sun at the centre of the solar system, but he also gave detailed accounts of the motions of Earth, the Moon and those planets that were known at that time. Between 1510 and 1514 he drafted Commentariolus, his initial exposition of the theory. In order to have credence, the idea required that the Earth itself be not fixed in position. He said that the Earth revolves on its own axis once every twenty-four hours, which accounts for day and night and explains the apparent movement of the stars and Sun across the sky. Copernicus suggested in Commentariolus that the time taken for each planet to complete its cycle through the night sky might increase the further it is from the Sun.

Mercury’s cycle takes 88 days, which makes it the nearest planet to the Sun. Venus takes 225 days, Earth 1 year, Mars 1.9 years, Jupiter 12 years and Saturn 30 years. Thus Copernicus was able to work out the truth and attempted to establish the order of the planets.

He did not publish his findings because they were thought to contravene the teachings of the Catholic Church. Religious leaders of his time were against him. Martin Luther (founder of the Lutheran Church in Germany) denounced him as ‘a new astrologer…. the fool’ who wanted ‘to overturn the entire science of astronomy’. His book De Revolutionibus Orbium Coelestium (On the revolution of the celestial spheres) was published at the very end of his life, and a copy placed on his deathbed. Thus the greatest astronomer of his time died without seeing his book in print – the book as influential as Newton’s Principia and Darwin’s ‘On The Origin of Species’.

Portrait of Copernicus

The text was rejected by many academics; partially because the author had undermined the simplicity of his initial ideas by clinging to the Aristotelian belief that planetary motion took place in perfect circles. This meant Copernicus had been forced to introduce his own system of epicycles and other complex motions to fit in with observational evidence, thereby producing as equally complicated an explanation as the geocentric one he had initially rejected for its lack of simplicity.

It was not until Johannes Kepler offered the solution that the planets move in an elliptical, not circular, motion in 1609 that the simplicity that Copernicus had been seeking was offered and the rest of the model could be vindicated.

In fact, it was not until 1616 that the Church banned the text Copernicus eventually published for its ‘blasphemous’ content, although that sanction remained in place until 1835.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - THE STARSTHE STARS

ANDREAS VESALIUS (1514- 64)

1543 – Padua, Italy

‘In spite of his premature death, Vesalius left behind a revolutionary legacy to anatomy students’

Portrait of Vesalius &copy:

VESALIUS

By his reasoned, critical approach to GALEN he broke the reverence ascribed to the former master and created a model for independent, rational investigation in the development of medical science.

 

In 1543, Vesalius published ‘De Humani Corporis Fabrica Libri Septem‘ (The Seven Books on the Structure of the Human Body). Book One reveals Vesalius’s understanding of the importance of the skeleton. Book Two is about muscles; Book Three – Veins and Arteries; Book Four – The Nervous System. Book Five concerns the Main Body Organs; Book Six – The Heart & Lungs; Book Seven – The Brain.

 

At 42cm tall and 28cm wide with over 700 densely packed pages, it was impressive in size alone. It contained 200 illustrations, was the first definitive work on human anatomy actually based on the results of methodical dissections of humans and was the most accurate work on the subject ever written. Galen himself had never dissected a human body as this had been forbidden by Roman religious laws.

Anatomical Study Illustration from De Humani Corporis Fabrica 1543Anatomical Study Illustration from De Humani Corporis Fabrica 1543

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMEDICINE

Related sites

TYCHO BRAHE (1546-1601)

1577 – Denmark

‘The heavens are changeable, and the comets move through space. The Earth is the centre of the Universe, and round it rotates the Moon and the Sun. The planets orbit the Sun’

heliocentrismo-de-brahe459x444

Up to now it had been believed that planets were carried on ‘heavenly spheres’ that fit tightly around each other.

Brahe dissented from the Copernican doctrine and accepted the dogma that the Earth stood still. His real contribution to astronomy was as an observer, rather than as a theorist. He accurately measured the position of 777 stars, a remarkable achievement considering it was done without a telescope. He also measured the movement of planets, but was unable to determine their orbits.

His observations paved the way for the discoveries of his assistant, Kepler. After Brahe’s death Kepler inherited Brahe’s vast accumulation of data on planetary observations.

portrait of tycho brahe

TYCHO BRAHE

Brahe’s observation of the supernova of 1572 and the comet of 1577 convinced him that the Universe was not unchangeable as was believed by philosophers of his time. The notion of celestial spheres was not possible because comets moved through these spheres. But he still placed the Earth at the centre of the Universe. His contemporary, the Italian philosopher GIORDANO BRUNO (1548-1600), believed in the Sun centered Copernican system and for these heretical beliefs was burned at the stake.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE STARS

EVANGELISTA TORICELLI (1608- 47)

1640 – Italy

‘Together with VINCENZO VIVIANI (1622-1703) realised that the weight of air pushing on a reservoir of mercury can force the liquid to rise into a tube that contains no air; that is, a vacuüm’

In 1650 OTTO VON GUERICKE (1602-1686) invented an air pump and showed that if you remove the air from the centre of two hemispheres that are resting together, the pressure of the outside air is sufficient to prevent a team of horses from pulling them apart.

1657 – Formed the Accademia del Cimento with eight other Florentines to build their own apparatus and conduct experiments to advance the pursuit of knowledge. Disbanded after ten years as a condition of its patron Leopoldo de Medici’s appointment as cardinal, its dissolution followed Galileo’s trial by the Catholic Church and marked the decline of free scientific research in Italy.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

BLAISE PASCAL (1623- 62)

1647 – France

Portrait of BLAISE PASCAL

BLAISE PASCAL

‘When pressure is applied anywhere to an enclosed fluid, it is transmitted uniformly in all directions’

EVANGELISTA TORICELLI (1608-47) had argued that air pressure falls at higher altitudes.

Using a mercury barometer, Pascal proved this on the summit of the 1200m high Puy de Dome in 1647. His studies in this area led to the development of PASCAL’S PRINCIPLE, the law that has practical applications in devices such as the car jack and hydraulic brakes. This is because the small force created by moving a lever such as the jacking handle in a sizable sweep equates to a large amount of pressure sufficient to move the jack head a few centimetres.
The unit of pressure is now termed the pascal.

‘The study of the likelihood of an event’

Together with PIERRE DE FERMAT, Pascal developed the theory of probabilities (1654) using the now famous PASCAL’S TRIANGLE.

Chance is something that happens in an unpredictable way. Probability is the mathematical concept that deals with the chances of an event happening.

Probability theory can help you understand everything from your chances of winning a lottery to your chances of being struck by lightning. You can find the probability of an event by simply dividing the number of ways the event can happen by the total number of possible outcomes.
The probability of drawing an ace from a full pack of cards is 4/52 or 0.077.

Probability ranges from 1 (100%) – Absolutely certain, through Very Likely 0.9 (90%) and Quite Likely 0.7 (70%), Evens (Equally Likely) 0.5 (50%), Not Likely 0.3 (30%) and Not Very Likely 0.2 (20%), to Never – Probability 0 (0%).

Picture of the 'Pascaline'. The French mathematician Blaise Pascal invented the a mechanical calculation machine. He called it the Pascaline. The Pascaline was made out of clock gears and levers and could solve basic mathematical problems like addition and subtraction.

 
 

The computer language Pascal is named in recognition of his invention in 1644 of a mechanical calculating machine that could add and subtract.

 
 
 

Like many of his contemporaries, Pascal did not separate philosophy from science; in his book ‘Pensees’ he applies his mathematical probability theory to the problem of the existence of God. In the absence of evidence for or against God’s existence, says Pascal, the wise man will choose to believe, since if he is correct he will gain his reward, and if he is incorrect he stands to lose nothing.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCOMPUTERS

ROBERT BOYLE (1627- 91)

1662 – England

‘The volume of a given mass of a gas at constant temperature is inversely proportional to its pressure’

If you double the pressure of a gas, you halve its volume. In equation form: pV = constant; or p1V1 = p2V2 where the subscripts 1 & 2 refer to the values of pressure and volume at any two readings during the experiment.

Born at Lismore Castle, Ireland, Boyle was a son of the first Earl of Cork. After four years at Eton College, Boyle took up studies in Geneva in 1638. In 1654 he moved to Oxford where in 1656, with the philosopher John Locke and the architect Christopher Wren, he formed the experimental Philosophy Club and met ROBERT HOOKE, who became his assistant and with whom he began making the discoveries for which he became famous.

Robert Boyle. New Experiments Physico-Mechanical. Oxford: Thomas Robinson, 1662

New Experiments Physico-Mechanical 1662

In 1659, with Hooke, Boyle made an efficient vacuum pump, which he used to experiment on respiration and combustion, and showed that air is necessary for life as well as for burning. They placed a burning candle in a jar and then pumped the air out. The candle died. Glowing coal ceased to give off light, but would start glowing again if air was let in while the coal was still hot. In addition they placed a bell in the jar and again removed the air. Now they could not hear it ringing and so they found that sound cannot travel through a vacuum.

Boyle proved Galileo’s proposal that all matter falls at equal speed in a vacuum.

He established a direct relationship between air pressure and volumes of gas. By using mercury to trap some air in the short end of a ‘J’ shaped test tube, Boyle was able to observe the effect of increased pressure on its volume by adding more mercury. He found that by doubling the mass of mercury (in effect doubling the pressure), the volume of the air in the end halved; if he tripled it, the volume of air reduced to a third. His law concluded that as long as the mass and temperature of the gas is constant, then the pressure and volume are inversely proportional.

Boyle appealed for chemistry to free itself from its subservience to either medicine or alchemy and is responsible for the establishment of chemistry as a distinct scientific subject. His work promoted an area of thought which influenced the later breakthroughs of ANTOINE LAVOISIER (1743-93) and JOSEPH PRIESTLY (1733-1804) in the development of theories related to chemical elements.

Boyle extended the existing natural philosophy to include chemistry – until this time chemistry had no recognised theories.

The idea that events are component parts of regular and predictable processes precludes the action of magic.
Boyle sought to refute ARISTOTLE and to confirm his atomistic or ‘corpuscular’ theories by experimentation.

In 1661 he published his most famous work, ‘The Skeptical Chymist’, in which he rejected Aristotle’s four elements – earth, water, fire and air – and proposed that an element is a material substance consisting at root of ‘primitive and simple, or perfectly unmingled bodies’, that it can be identified only by experiment and can combine with other elements to form an infinite number of compounds.

The book takes the form of a dialogue between four characters. Boyle represents himself in the form of Carneades, a person who does not fit into any of the existing camps, as he disagrees with alchemists and sees chemists as lazy hobbyists. Another character, Themistius, argues for Aristotle’s four elements; while Philoponus takes the place of the alchemist, Eleutherius stands in as an interested bystander.

In the conclusion he attacks chemists.

page from one of Boyle's publications“I think I may presume that what I have hitherto Discursed will induce you to think, that Chymists have been much more happy finding Experiments than the Causes of them; or in assigning the Principles by which they may be best explain’d”
He pushes the point further: “me thinks the Chymists, in the searches after truth, are not unlike the Navigators of Solomon’s Tarshish Fleet, who brought home Gold and Silver and Ivory, but Apeas and Peacocks too; For so the Writings of several (for I say not, all) of your Hermetick Philosophers present us, together with divers Substantial and noble Experiments, Theories, which either like Peacock’s feathers made a great show, but are neither solid nor useful, or else like Apes, if they have some appearance of being rational, are blemished with some absurdity or other, that when they are Attentively consider’d, makes them appear Ridiculous”

The critical message from the book was that matter consisted of atoms and clusters of atoms. These atoms moved about, and every phenomenon was the result of the collisions of the particles.

He was a founder member of The Royal Society in 1663. Unlike the Accademia del Cimento the Royal Society thrived.

Like FRANCIS BACON he experimented relentlessly, accepting nothing to be true unless he had firm empirical grounds from which to draw his conclusions. He created flame tests in the detection of metals and tests for identifying acidity and alkalinity.

It was his insistence on publishing chemical theories supported by accurate experimental evidence – including details of apparatus and methods used, as well as failed experiments – which had the most impact upon modern chemistry.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

NEXT buttonCHEMISTRY

NEXT buttonGAS LAWS

ISAAC NEWTON (1642-1727)

1687 – England

‘Any two bodies attract each other with a force proportional to the product of their masses and inversely proportional to the square of the distance between them’

portrait of NEWTON ©

NEWTON

The force is known as gravitation
Expressed as an equation:

F = GmM/r2

where F is Force, m and M the masses of two bodies, r the distance between them and G the gravitational constant
This follows from KEPLER’s laws, Newton’s laws of motion and the laws of conic sections. Gravitation is the same thing as gravity. The word gravity is particularly used for the attraction of the Earth for other objects.

Gravitation
Newton stated that the law of gravitation is universal; it applies to all bodies in the universe. All historical speculation of different mechanical principles for the earth from the rest of the cosmos were cast aside in favour of a single system. He demonstrated that the planets were attracted toward the Sun by a force varying as the inverse square of the distance and generalized that all heavenly bodies mutually attract one another. Simple mathematical laws could explain a huge range of seemingly disconnected physical facts, providing science with the straightforward explanations it had been seeking since the time of the ancients. That the constant of gravitation is in fact constant was proved by careful experiment, that the focus of a body’s centre of gravity appears to be a point at the centre of the object was proved by his calculus.

Calculus
The angle of curve, by definition, is constantly changing, so it is difficult to calculate at any particular point. Similarly, it is difficult to calculate the area under a curve. Using ARCHIMEDES’ method of employing polygons and rectangles to work out the areas of circles and curves, and to show how the tangent or slope of any point of a curve can be analyzed, Newton developed his work on the revolutionary mathematical and scientific ideas of RENE DESCARTES, which were just beginning to filter into England, to create the mathematics of calculus. Calculus studies how fast things change.
The idea of fluxions has become known as differentiation, a means of determining the slope of a line, and integration, of finding the area beneath a curve.

Newton’s ideas on universal gravitation did not emerge until he began a controversial correspondence with ROBERT HOOKE in around 1680. Hooke claimed that he had solved the problem of planetary motion with an inverse square law that governed the way that planets moved. Hooke was right about the inverse square law, but he had no idea how it worked or how to prove it, he lacked the genius that permitted Newton to combine Kepler’s laws of planetary motion with the assumption that an object falling towards Earth was the same kind of motion as the Earth’s falling toward the Sun.
It was not until EDMUND HALLEY challenged Newton in 1684 to show how planets could have the elliptical orbits described by Johannes Kepler, supposing the force of attraction by the Sun to be the reciprocal of their distance from it – and Newton replied that he already knew – that he fully articulated his laws of gravitation.

It amounts to deriving Kepler’s first law by starting with the inverse square hypothesis of gravitation. Here the Sun attracts each of the planets with a force that is inversely proportional to the square of the distance of the planet from the Sun. From Kepler’s second law, the force acting on the planets is centripetal. Newton says this is the same as gravitation.

In the previous half century, Kepler had shown that planets have elliptical orbits and GALILEO had shown that things accelerate at an even pace as they fall towards the ground. Newton realized that his ideas about gravity and the laws of motion, which he had only applied to the Earth, might apply to all physical objects, and work for the heavens too. Any object that has mass will be pulled towards any other object. The larger the mass, the greater the pull. Things were not simply falling but being pulled by an invisible force. Just as this force (of gravity) pulls things towards the Earth, it also keeps the Moon in its orbit round the Earth and the planets moving around the Sun. With mathematical proofs he showed that this force is the same everywhere and that the pull between two things depends on their mass and the square of the distance between them.

Title page of Philosophiae Naturalis Principia Mathematica

Title page of Philosophiae Naturalis Principia Mathematica

Newton published his law of gravitation in his magnum opus Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) in 1687. In it Newton analyzed the motion of orbiting bodies, projectiles, pendulums and free fall near the Earth.

The first book of Principia states the laws of motion and deals with the general principles of mechanics. The second book is concerned mainly with the motion of fluids. The third book is considered the most spectacular and explains gravitation.

Why do two objects attract each other?
‘I frame no hypotheses’, said Newton

It was Newton’s acceptance of the possibility that there are mysterious forces in the world, his passions for alchemy and the study of the influence of the Divine that led him to the idea of an invisible gravitational force – something that the more rationally minded Galileo had not been able to accept.
Newton’s use of mathematical expression of physical occurrences underlined the standard for modern physics and his laws underpin our basic understanding of how things work on an everyday scale. The universality of the law of gravitation was challenged in 1915 when EINSTEIN published the theory of general relativity.

1670-71 Newton composes ‘Methodis Fluxionum‘, his main work on calculus, which is not published until 1736. His secrecy meant that in the intervening period, the German mathematician LEIBNIZ could publish his own independently discovered version – he gave it the name calculus, which stuck.

LAWS OF MOTION

1687 – England

  • First Law: An object at rest will remain at rest and an object in motion will remain in motion at that velocity until an external force acts on the object

  • Second Law: The sum of all forces (F) that act on an object is equal to the mass (m) of the object multiplied by the acceleration (a), or F = ma

  • Third Law: To every action, there is an equal and opposite reaction

The first law

introduces the concept of inertia, the tendency of a body to resist change in its velocity. The law is completely general, applying to all objects and any force. The inertia of an object is related to its mass. Things keep moving in a straight line until they are acted on by a force. The Moon tries to move in a straight line, but gravity pulls it into an orbit.
Weight is not the same as mass.

The second law

explains the relationship between mass and acceleration, stating that a force can change the motion of an object according to the product of its mass and its acceleration. That is, the rate and direction of any change depends entirely on the strength of the force that causes it and how heavy the object is. If the Moon were closer to the Earth, the pull of gravity between them would be so strong that the Moon would be dragged down to crash into the Earth. If it were further away, gravity would be weaker and the Moon would fly off into space.

The third law

shows that forces always exist in pairs. Every action and reaction is equal and opposite, so that when two things crash together they bounce off one another with equal force.

LIGHT

1672 – New Theory about Light and Colours is his first published work and contains his proof that white light is made up of all colours of the spectrum. By using a prism to split daylight into the colours of the rainbow and then using another to recombine them into white light, he showed that white light is made up of all the colours of the spectrum, each of which is bent to a slightly different extent when it passes through a lens – each type of ray producing a different spectral colour.

Newton also had a practical side. In the 1660s his reflecting telescope bypassed the focusing problems caused by chromatic aberration in the refracting telescope of the type used by Galileo. Newton solved the problem by swapping the lenses for curved mirrors so that the light rays did not have to pass through glass but reflected off it.

At around the same time, the Dutch scientist CHRISTIAAN HUYGENS came up with the convincing but wholly contradictory theory that light travels in waves like ripples on a pond. Newton vigorously challenged anyone who tried to contradict his opinion on the theory of light, as Robert Hooke and Leibniz, who shared similar views to Huygens found out. Given Newton’s standing, science abandoned the wave theory for the best part of two hundred years.

1704 – ‘Optiks’ published. In it he articulates his influential (if partly inaccurate) particle or corpuscle theory of light. Newton suggested that a beam of light is a stream of tiny particles or corpuscles, traveling at huge speed. If so, this would explain why light could travel through a vacuüm, where there is nothing to carry it. It also explained, he argued, why light travels in straight lines and casts sharp shadows – and is reflected from mirrors. His particle theory leads to an inverse square law that says that the intensity of light varies as the square of its distance from the source, just as gravity does. Newton was not dogmatic in Optiks, and shows an awareness of problems with the corpuscular theory.

In the mid-eighteenth century an English optician John Dolland realized that the problem of coloured images could largely be overcome by making two element glass lenses, in which a converging lens made from one kind of glass was sandwiched together with a diverging lens made of another type of glass. In such an ‘achromatic’ lens the spreading of white light into component colours by one element was cancelled out by the other.

During Newton’s time as master of the mint, twenty-seven counterfeiters were executed.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

GRAVITYGRAVITY

LIGHTLIGHT

Related articles

MICHAEL FARADAY (1791-1869)

1831 – England

‘A changing magnetic field around a conductor produces an electric current in the conductor. The size of the voltage is proportional to the rate of change of the magnetic field’

portrait drawing of MICHAEL FARADAY English chemist and physicist (British Library) (1791-1867)

This phenomenon is called ‘electromagnetic induction’ and the current produced ‘induced current’. Induction is the basis of the electric generator and motor.

Faraday developed HANS CHRISTIAN OERSTED’s 1820 discovery that electric current could deflect a compass needle. In his experiment Faraday wrapped two coils of insulated wire around opposite sides of an iron ring. One coil was connected to a battery, the other to a wire under which lay a magnetic compass needle. He anticipated that if he passed a current through the first wire it would establish a field in the ring that would induce a current in the second wire. He observed no effect when the current was steady but when he turned the current on and off he noticed the needle moving. He surmised that whenever the current in the first coil changed, current was induced in the second. To test this concept he slipped a magnet in and out of a coil of wire. While the magnet was moving the compass needle registered a current, as he pushed it in it moved one way, as he pulled it out the needle moved in the opposite direction. This was the first production of electricity by non-chemical means.

In 1831, by rotating a copper disc between the poles of a magnet, Faraday was able to produce a steady electric current. This was the world’s first dynamo.

NEWTON, with his concept of gravity, had introduced the idea of an invisible force that exerted its effect through empty space, but the idea of ‘action-at-a-distance’ was rejected by an increasing number of scientists in the early nineteenth century. By 1830, THOMAS YOUNG and AUGUSTIN FRESNEL had shown that light did not travel as particles, as Newton had said, but as waves or vibrations. But if this was so, what was vibrating? To answer this, scientists came up with the idea of a weightless matter, or ‘aether’.

Faraday had rejected the concept of electricity as a ‘fluid’ and instead visualised its ‘fields’ with lines of force at their edges – the lines of force demonstrated by the pattern of iron fillings around a magnet. This meant that action at a distance simply did not happen, but things moved only when they encountered these lines of force. He believed that magnetism was also induced by fields of force and that it could interrelate with electricity because the respective fields cut across each other. Proving this to be true by producing an electric current via magnetism, Faraday had demonstrated electromagnetic induction.

When Faraday was discovering electromagnetic induction he did so in the guise of a natural philosopher. Physics, as a branch of science, was yet to be given a name.

The Russian physicist HEINRICH LENZ (1804- 65) extended Faraday’s work when in 1833 he suggested that ‘the changing magnetic field surrounding a conductor gives rise to an electric current whose own magnetic field tends to oppose it.’ This is now known as Lenz’s law. This law is in fact LE CHATELIER‘s principle when applied to the interactions of currents and magnetic fields.

Fluctuating_Electromagnetic_Fields_and_EM_Waves

Fluctuating Electromagnetic Fields and EM Waves

It took a Scottish mathematician by the name of JAMES CLERK MAXWELL to provide a mathematical interpretation of Faraday’s work on electromagnetism.

Describing the complex interplay of electric and magnetic fields, he was able to conclude mathematically that electromagnetic waves move at the speed of light and that light is just one form of electromagnetic wave.
This led to the understanding of light and radiant heat as moving variations in electromagnetic fields. These moving fields have become known collectively as radiation.

Faraday continued to investigate the idea that the natural forces of electricity, magnetism, light and even gravity are somehow ‘united’, and to develop the idea of fields of force. He focused on how light and gravity relate to electromagnetism.
After conducting experiments using transparent substances, he tried a piece of heavy lead glass, which led to the discovery of the ‘Faraday Effect’ in 1845 and proved that polarised light may be affected by a magnet. This opened the way for enquiries into the complete spectrum of electromagnetic radiation.

In 1888 the German physicist HEINRICH HERTZ confirmed the existence of electromagnetic waves – in this case radio waves – traveling at the speed of light.

The unit of capacitance, farad (F) is named in honour of Faraday.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

Faraday Lecture -‘The chemical history of a candle’
Faraday as a discoverer

<< top of page

HENRY GWYN JEFFREYS MOSELEY (1887-1915)

University of Manchester logo used as link to MXIF pages

MXIF

1914 – Manchester, England

‘Moseley’s law – the principle outlining the link between the X-ray frequency of an element and its atomic number’

ca. 1910s --- Physicist Henry Gwyn Jeffreys MOSELEY --- Library Image by © Bettmann/CORBIS

MOSELEY

Working with ERNEST RUTHERFORD’s team in Manchester trying to better understand radiation, particularly of radium, Moseley became interested in X-rays and learning new techniques to measure their frequencies.
A technique had been devised using crystals to diffract the emitted radiation, which had a wavelength specific to the element being experimented upon.

In 1913, Moseley recorded the frequencies of the X-ray spectra of over thirty metallic elements and deduced that the frequencies of the radiation emitted were related to the squares of certain incremental whole numbers. These integers were indicative of the atomic number of the element, and its position in the periodic table. This number was the same as the positive charge of the nucleus of the atom (and by implication also the number of electrons with corresponding negative charge).

By uniting the charge in the nucleus with an atomic number, a vital link had been found between the physical atomic make up of an element and its chemical properties, as indicated by where it sits in the periodic table.
This meant that the properties of an element could now be considered in terms of atomic number rather than atomic weight, as had previously been the case – certain inconsistencies in the MENDELEEV version of the periodic table could be ironed out. In addition, the atomic numbers and weights of several missing elements could be predicted and other properties deduced from their expected position in the table.

picture of the Nobel medal - link to nobelprize.org

Link to WIKIPEDIA

NEXT buttonTIMELINE

NEXT buttonX-RAY DIFFRACTION