FRANCIS BACON (1561-1626)

1620 – England

‘Scientific laws must be based on observations and experiments’

Bacon rejected ARISTOTLE‘s deductive or a priori, approach to reasoning and suggested his own, inductive, or a posteriori, approach. Bacon developed the scientific method – but he did not make any significant scientific discovery.

‘I shall content myself to awake better spirits like a bell-ringer, who is first up to call others to church’

Portrait of FRANCIS BACON ©

FRANCIS BACON

Bacon, a philosopher, advocated a new method of enquiry, completely different from the philosophical methods of the ancient Greeks, in his book Novum Organum – which has influenced scientists since its publication in 1620.

The text proposed the sentiment of ‘The Advancement of Learning’ (1605) signaling dissatisfaction with the limits of, and approaches to, knowledge to date and foresaw a future where the ancient masters would be far surpassed – Aristotle had written a text called Organum or ‘Logical Works’ and Bacon’s ‘new’ approach suggested an alternative direction to scientific study.

Bacon strongly criticised Aristotle’s deductive method of science, which involved formulating abstract ideas and ‘logically’ building upon them step-by-step to find ‘truths’, without thorough consideration of whether the theoretical foundation in itself was ever valid.

Rather than rely on superstition or accept unquestioningly the flawed solutions of the ancient academics as had largely been the case for two thousand years, Bacon’s alternative was to argue for ‘inductive’ reason, where the only ‘certain’ statements that should ever be made were based on observation and proof collected from the natural world. The essence of his method is to collect masses of data by observations and experiments, analyse facts by drawing up tables of negative, affirmative and variable instances of the phenomenon ( ‘Tables of Comparative Instances’ ), draw (induce) hypotheses from the evidence, then to collect further evidence to proceed towards a more general theory. The most important aspect of this method was the idea of drawing up tentative hypotheses from available data and then verifying them by further investigations.

‘A true and fruitful natural philosophy has a double scale or ladder ascendant or descendant, ascending from experiments to axioms and descending from axioms to the invention of new experiments’, he wrote in Novum Organum.

Bacon cautioned those trying to practice his new method, urging them to repudiate four kinds of intellectual idol

  • Perceptual Illusions – ‘idols of the tribe’

  • Personal biases – ‘idols of the cave’

  • Linguistic confusions – ‘idols of the market place’

  • Dogmatic philosophical systems – ‘idols of the theatre’

more

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

Advertisements

WILLIAM PROUT (1785-1850)

1815 – UK

‘Atoms are not the smallest thing’

After ANTOINE LAVOISIER had compiled his list of the then known elements, another 32 were added in the years following his death. Fifty kinds of fundamental building blocks for matter seemed excessive. In 1815 Prout, using AVOGADRO’s method of comparing the relative densities and weights of gases, proposed that all atoms appeared to have weights that were exact multiples of the weight of the lightest atom, hydrogen, and that the different atomic weights of elements are whole-number multiples of the atomic weight of hydrogen (Prout’s hypothesis).

Portreait of William Prout (c) The University of Edinburgh Fine Art Collection; Supplied by The Public Catalogue Foundation

WILLIAM PROUT

He took this as proof that all atoms were actually made from hydrogen atoms and the idea was adopted as atomic theory and used for later investigations of atomic weights and the classification of the elements.

If all atoms are made from atoms of hydrogen, then it could be possible to transform an atom of one element into an atom of another.
If atoms had been assembled from other things, then they themselves could not be the smallest things in creation.

Apart from the method of weighing atoms being controversial, there are exceptions to the rule. Chlorine is 35.5 times as heavy as hydrogen.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

NEXT buttonTHE ATOM