Typographic resetting of Gutenberg's 42-line bible of 1452-55, using modern Fraktur and decorative initial in METAFONT by Yannis Haralambous. (Beginning of St. John's Gospel) from a LaTex advertising flyer.

1450 – Mainz, Germany

‘Movable type’


Hand-held block printing – a laborious process of carving whole pages of fixed text out of wooden slabs and reproducing copies using dies – had been used for many decades before the German inventor appeared. What Gutenberg mastered was the idea of placing individual metal letters – (his family background was in minting and metalworking, an ideal foundation for his training as an engraver and goldsmith. His skills enabled him to craft the first individual metal letter moulds) – into temporary mounts, which could then be dismantled or ‘moved’ once a page of text had been completed and reused to produce other pages.

In comparison to engraving and the single use of wooden blocks, the theoretically infinite number of sides which could be made out of a set of metal characters, together with the speed at which a template could be created, revolutionised printing and the spread of the printed word.

engraving of Johannes Gutenberg

Gutenberg printing press. Johannes Gutenberg (c. 13951468) invented the printing press sometime in the mid-fifteenth century. The moveable printing blocks it employed made it far simpler to operate than the complicated machinery of the Far East

Some sources credit the Chinese with inventing moveable type printing, using characters made of wood. What is notable is the quality of Gutenberg’s metal casts and press – they are almost as important as the idea of moveable type itself.

By the end of the fifteenth century tens of thousands of books and pamphlets were already in existence, giving academics the opportunity to share scientific knowledge widely and cheaply.

Wikipedia-logo © (link to wikipedia)



PARACELSUS (1493-1541)

Europe – early sixteenth century

‘Added salt to the mercury/sulfur diad, making a trinity to match the holy trinity’

picture of philippus aureolus theophrastus_paracelsus


Elaborating his writings with occult mystery, Theophrastus von Hohenheim renamed himself Paracelsus and helped to reform medicine by making it chemical.
Many of his ideas were erroneous and his writings were deliberately obscure; he insisted that the ‘doctrine of signatures’ could reveal efficacious drugs for different organs. Proclaiming that specific therapies could counter a particular disease was a radically different approach to the Aristotelian attempts to rebalance an individual’s internal humors.

Paracelsus extended the ‘fundamental qualities’ of the four Aristotelian elements by adding a third ‘hydrostatic principle’ to the diad of J’BIR IHBIN AYAM – saying the material manifestation of the ancient elements ( ‘…everything that lies in the four elements’ ) may be reduced to mercury, sulfur and salt.

The first distillate of an organic substance would be the thin, volatile ‘mercury’, which acted in favour of youth and life while next came the ‘sulfur’, acting in favour of growth and increase. Finally, the dry mass left behind was the ‘salt’. The concept of these three principles was considered a slight advance upon that of the four elements.

These are not the same things as we recognize today, nor elements in their own right; the first two were components of metals, salt was a principle common to all living things.

The Royal physicians of Elizabeth I of England and Henry IV of France assimilated and adapted Paracelsus’s ideas and although his theories lost credibility, his chemical remedies entered mainstream medicine.

Wikipedia-logo © (link to wikipedia)



TYCHO BRAHE (1546-1601)

1577 – Denmark

‘The heavens are changeable, and the comets move through space. The Earth is the centre of the Universe, and round it rotates the Moon and the Sun. The planets orbit the Sun’


Up to now it had been believed that planets were carried on ‘heavenly spheres’ that fit tightly around each other.

Brahe dissented from the Copernican doctrine and accepted the dogma that the Earth stood still. His real contribution to astronomy was as an observer, rather than as a theorist. He accurately measured the position of 777 stars, a remarkable achievement considering it was done without a telescope. He also measured the movement of planets, but was unable to determine their orbits.

His observations paved the way for the discoveries of his assistant, Kepler. After Brahe’s death Kepler inherited Brahe’s vast accumulation of data on planetary observations.

portrait of tycho brahe


Brahe’s observation of the supernova of 1572 and the comet of 1577 convinced him that the Universe was not unchangeable as was believed by philosophers of his time. The notion of celestial spheres was not possible because comets moved through these spheres. But he still placed the Earth at the centre of the Universe. His contemporary, the Italian philosopher GIORDANO BRUNO (1548-1600), believed in the Sun centered Copernican system and for these heretical beliefs was burned at the stake.

Wikipedia-logo © (link to wikipedia)




1600 – England

‘Gilbert’s principal area of study related to magnetism, however, his method of enquiry is equally significant’

portrait of WILLIAM GILBERT ©


Gilbert rejected the scholastics’ approach to science, preferring the experimental method, which he applied to the Earth’s magnetic properties.
He carried out some of the first systematic studies of the lodestone in Europe and showed that the Earth acts as a bar magnet with magnetic poles.

His celebrated text, ‘De magnete, magnetisque corporibus, et de magno magnete tellure‘ (On the Magnetic, Magnetic Bodies and the Great Magnet Earth – 1600) is considered to be one of the first truly scientific texts.
Gilbert received his medical training in Cambridge and practiced as a physician in London. He became president of the College of Physicians and was physician to Queen Elizabeth I.

In the time of Elizabeth I and Shakespeare, England was still largely a place of superstition and religious fervor. Gilbert concurred with Copernicus, a potentially dangerous sentiment in an era when elsewhere in Europe others such as Giordano Bruno and later GALILEO were being persecuted (and in the case of Bruno, executed) for sharing the same opinion.

Magnetism was to cast its influence in the eighteenth century, displayed through the electric fluid of GALVANI and VOLTA

He distinguished the properties of magnetism from the attractive effect produced by friction with amber. In so doing he introduced the term that was to become electricity.
He introduced a number of expressions to the English language including: magnetic pole, electric force and electric attraction.
A term of magneto motive force, the gilbert, is named after him.

Gilbert and others postulated that magnetism is the force holding the planets in their orbits.

Wikipedia-logo © (link to wikipedia)


FRANCIS BACON (1561-1626)

1620 – England

‘Scientific laws must be based on observations and experiments’

Bacon rejected ARISTOTLE‘s deductive or a priori, approach to reasoning and suggested his own, inductive, or a posteriori, approach. Bacon developed the scientific method – but he did not make any significant scientific discovery.

‘I shall content myself to awake better spirits like a bell-ringer, who is first up to call others to church’

Portrait of FRANCIS BACON ©


Bacon, a philosopher, advocated a new method of enquiry, completely different from the philosophical methods of the ancient Greeks, in his book Novum Organum – which has influenced scientists since its publication in 1620.

The text proposed the sentiment of ‘The Advancement of Learning’ (1605) signaling dissatisfaction with the limits of, and approaches to, knowledge to date and foresaw a future where the ancient masters would be far surpassed – Aristotle had written a text called Organum or ‘Logical Works’ and Bacon’s ‘new’ approach suggested an alternative direction to scientific study.

Bacon strongly criticised Aristotle’s deductive method of science, which involved formulating abstract ideas and ‘logically’ building upon them step-by-step to find ‘truths’, without thorough consideration of whether the theoretical foundation in itself was ever valid.

Rather than rely on superstition or accept unquestioningly the flawed solutions of the ancient academics as had largely been the case for two thousand years, Bacon’s alternative was to argue for ‘inductive’ reason, where the only ‘certain’ statements that should ever be made were based on observation and proof collected from the natural world. The essence of his method is to collect masses of data by observations and experiments, analyse facts by drawing up tables of negative, affirmative and variable instances of the phenomenon ( ‘Tables of Comparative Instances’ ), draw (induce) hypotheses from the evidence, then to collect further evidence to proceed towards a more general theory. The most important aspect of this method was the idea of drawing up tentative hypotheses from available data and then verifying them by further investigations.

‘A true and fruitful natural philosophy has a double scale or ladder ascendant or descendant, ascending from experiments to axioms and descending from axioms to the invention of new experiments’, he wrote in Novum Organum.

Bacon cautioned those trying to practice his new method, urging them to repudiate four kinds of intellectual idol

  • Perceptual Illusions – ‘idols of the tribe’

  • Personal biases – ‘idols of the cave’

  • Linguistic confusions – ‘idols of the market place’

  • Dogmatic philosophical systems – ‘idols of the theatre’


Wikipedia-logo © (link to wikipedia)



1684 – Germany

‘A new method for maxima and minima, as well as tangents … and a curious type of calculation’

Newton invented calculus (fluxions) as early as 1665, but did not publish his major work until 1687. The controversy continued for years, but it is now thought that each developed calculus independently.
Terminology and notation of calculus as we know it today is due to Leibniz. He also introduced many other mathematical symbols: the decimal point, the equals sign, the colon (:) for division and ratio, and the dot for multiplication.

Wikipedia-logo © (link to wikipedia)




1843 – Germany

‘The number of visible sunspots varies in a regular cycle that averages about 11 years’

image of the Sun from space

GALILEO was the first to study sunspots. Schwabe made careful records of sunspots almost daily for 17 years before announcing his theory. He continued his observations for another 25 years.

Wherever magnetic fields emerge from the Sun, they suppress the flow of surrounding hot gases, creating relatively cool regions that appear as dark patches in the Sun’s shallow outer layer, the photosphere.

Sunspots vary in size from 1000 to 40,000 kilometres across and may last from a few days to many months.

Near a solar minimum there are only a few sunspots. During a solar maximum, solar flares can produce dramatic changes in the emission of ultraviolet rays and X-rays from the Sun.

Hot plasma of several thousand degrees rises upwards from within the Sun, then cools down and sinks back into the depths. Where the strong magnetic fields hold the plasma, dark sunspots emerge.

Wikipedia-logo © (link to wikipedia)