EDWARD FRANKLAND (1825- 99)

1852 – England

‘The capacity of a given element to combine with other elements to form compounds is determined by the number of chemical bonds that element can form with other elements’

This ‘combining power’ is now termed valency or valence.

Photo portrait of EDWARD FRANKLAND ©

EDWARD FRANKLAND

Valency is the number of electrons an atom of an element must lose or gain, either completely or by sharing, in order to form a compound. This leaves the atom with the stable electronic configuration of a noble gas (that is a completely full outer shell).
For example, in H2O, hydrogen has a valency of +1 (H+) and Oxygen -2 (O-2). Two hydrogen atoms lose one electron each; one oxygen atom gains these two electrons.

Every atom has a fixed number of bonds that it can form, and to be stable all of these must be employed. If a hydrogen atom bonds to another hydrogen atom, then the bonds on each atom will be fully used in forming H2, a molecule of hydrogen. The same can occur between two atoms of oxygen.
Alternatively, the two bonds on oxygen could be occupied by the bonds on two hydrogen atoms, forming water, H2O.
Frankland understood that only molecules in which atoms had all of their bonds occupied were stable. Most elements have a fixed valency, although some have more than one. The numerical values of valences represent the charge on the ion.

Lone pair shapes

Lone pair shapes

The concept of valence was further developed by FRIEDRICH AUGUST KEKULE who decided that the valence of carbon must be four which allowed carbon to form into chains of atoms or link into closed, six-atom rings. In the simplest such molecule, three of each carbon’s bonds are used to keep the ring together and the remaining bond on each carbon binds to a hydrogen atom. The resulting molecule of benzene contains six atoms of carbon and six atoms of hydrogen.

(image source)

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

<< top of page

SIR JOHN JOSEPH THOMSON (1856-1940)

1897 – England

’Not only was matter composed of particles not visible even with the modern microscope, as scientists from DEMOCRITUS to DALTON had surmised, but those particles were themselves composed of even smaller components’

photo of JJ THOMSON at work in the laboratory ©

JJ THOMSON

By the end of the nineteenth century scientists had cleared up much of the confusion surrounding atomic theory. The discovery of the sub-atomic particle was made in April 1897. They believed that they now largely understood the properties and sizes of the atoms of elements; without question, hydrogen was the smallest of all.

When JJ Thomson announced the discovery of a particle one thousandth the mass of the hydrogen atom the particles were named ‘electrons’ and have been a fundamental part of the understanding of atomic science ever since.

Thomson was investigating the properties of cathode rays, now known to be a simple stream of electrons, but at the time the cause of widespread debate. The rays were known to be visible, like normal light, but they were quite clearly not normal light. He devised a series of experiments, which would apply measurements to the cathode rays and clarify their nature. The rays were created by passing an electric charge through an airless or gasless discharge tube.

By improving the vacuüm in the tube, it was demonstrated that the rays could be deflected by electric and magnetic fields. Thomson drilled a hole in the anode of the tube to allow the mysterious rays from the cathode to pass through. In the space after the anode, he arranged that a magnetic force field from a magnet would tug the cathode rays in one direction, and an electric force field between two electrically charged metal plates would tug them in the opposite direction. The rays would eventually strike the glass wall of the tube to create a familiar greenish spot of light on the phosphor-coated tube.

Thomson concluded that the rays were made up of particles, not waves. He saw that the properties of the particles were negative in charge and didn’t seem to be specific to any one element; they were the same regardless of the gas used to transport the electric discharge, or the metal used at the cathode. From his findings he concluded that cathode rays were made up of a jet of ‘corpuscles’ and, more importantly, that these corpuscles were present in all elements. Thomson devised a method of measuring the mass of the particles and found them to be a fraction of the weight of the hydrogen atom.

The position of the spot indicated how much the beam of cathode rays had been deflected. The deflection could be made zero by adjusting the magnetic and electric forces so that they perfectly balanced. In such a situation, Thomson could read off the strength of the electric force. He knew in theory how the magnetic force on a charged particle depends on its speed. By equating the two forces, he was able to deduce the speed of the cathode rays. The deflection was also influenced by the electric charge carried by the cathode ray particles, and their mass. The larger the charge, the greater the force the particles felt and the greater their deflection, the smaller the mass, the easier it was for any force to push the particles about and again, the greater their deflection.

Independent evidence from electrolysis (passing electricity through liquids) that electric charge came in discreet chunks, which he assumed to be carried by individual cathode ray particles, enabled Thomson to calculate their mass.
He arrived at a figure that was a thousand billion billion billionth of a kilogram – a 1000th of the mass of a hydrogen atom.

Knowing the deflection of the dot and the velocity of the particles (the slower the particles, the longer they were exposed to the electric force and the greater the deflection of the glowing dot), Thomson expected to be able to deduce their charge and mass. What he actually deduced was a combination of their charge and mass.

Atoms were made of smaller things, but the fundamental building-blocks were not hydrogen atoms, as had been maintained by PROUT.

Thomson’s particles were christened ‘electrons’ and were the first subatomic entities. Thomson visualized a multitude of tiny electrons embedded ‘like raisins in a plum pudding’ in a diffuse ball of positive charge.

‘The atom is a sphere of positively charged protons in which negatively charged electrons are embedded in just sufficient quantity to neutralise the positive charge’

This was the accepted picture of the atom at the start of the twentieth century until RUTHERFORD found a way to probe inside the atom in 1911.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE ATOM

Related sites

<< top of page

ROBERT MILLIKAN (1868-1953)

1909 – USA

The charge on the electron’

Photograph of ROBERT ANDREWS MILLIKAN ©

ROBERT ANDREWS MILLIKAN

Millikan measured the charge on the electron.

His experiment showed that the electron is the fundamental unit of electricity; that is, electricity is the flow of electrons.
From his experiment Millikan calculated the basic charge on an electron to be 1.6 × 10-19 coulomb.
This charge cannot be subdivided – by convention this charge is called unit negative, -1, charge.

Millikan also determined that the electron has only about 1/1837 the mass of a proton, or 9.1 × 10-31 kilogram.

picture of the Nobel medal - link to nobelprize.org

Link to WIKIPEDIA

NEXT buttonTIMELINE

NEXT buttonTHE ATOM

NIELS BOHR (1885-1962)

1913 – Denmark

‘Electrons in atoms are restricted to certain orbits but they can move from one orbit to another’

Bohr’s was the first quantum model for the internal structure of the atom.

Bohr worked with RUTHERFORD in Manchester and improved upon Rutherford’s model, which said that electrons were free to orbit the nucleus at random.

Classical physics insisted that electrons moving around the nucleus would eventually expire and collapse into the nucleus as they radiated energy. Bohr resolved the issue surrounding Rutherford’s atomic structure by applying the concept of quantum physics set out by MAX PLANCK in 1900.
He suggested that the electrons would have to exist in one of a number of specific orbits, each being defined by specific levels of energy. From the perspective of quantum theory, electrons only existed in these fixed orbits where they did not radiate energy. The electrons could move to higher-level orbits if energy was added, or fall to lower ones if they gave out energy. The innermost orbit contains up to two electrons. The next may contain up to eight electrons. If an inner orbit is not full, an electron from an outer orbit can jump into it. Energy is released as light (a photon) when this happens. The energy that is released is a fixed amount, a quantum.

Quanta of radiation would only ever be emitted as an atom made the transition between states and released energy. Electrons could not exist in between these definite steps. This quantised theory of the electrons’ orbits had the benefits of explaining why atoms always emitted or absorbed specific frequencies of electromagnetic radiation and of providing an understanding of why atoms are stable.

Bohr calculated the amount of radiation emitted during these transitions using Planck’s constant. It fitted physical observations and made sense of the spectral lines of a hydrogen atom, observed when the electromagnetic radiation (caused by the vibrations of electrons) of the element was passed through a prism.
The prism breaks it up into spectral lines, which show the intensities and frequencies of the radiation – and therefore the energy emissions and absorptions of the electrons.

Each of the elements has an atomic number, starting with hydrogen, with an atomic number of one. The atomic number corresponds to the number of protons in the element’s atoms. Bohr had already shown that electrons inhabit fixed orbits around the nucleus of the atom.
Atoms strive to have a full outer shell (allowed orbit), which gives a stable structure. They may share, give away or receive extra electrons to achieve stability. The way that atoms will form bonds with others, and the ease with which they will do it, is determined by the configuration of electrons.
As elements are ordered in the periodic table by atomic number, it can be seen that their position in the table can be used to predict how they will react.

In addition to showing that electrons are restricted to orbits, Bohr’s model also suggested that

  • the orbit closest to the nucleus is lowest in energy, with successively higher energies for more distant orbits.
  • when an electron jumps to a lower orbit it emits a photon.
  • when an electron absorbs energy, it jumps to a higher orbit.

Bohr called the jump to another orbit a quantum leap.

Although it contained elements of quantum theory, the Bohr model had its flaws. It ignored the wave character of the electron. Work by WERNER KARL HEISENBERG later tackled these weaknesses.

Bohr’s theory of complementarity states that electrons may be both a wave and a particle, but that we can only experience them as one or the other at any given time. He showed that contradictory characteristics of an electron could be proved in separate experiments and none of the results can be accepted singly – we need to hold all the possibilities in mind at once. This requires a slight adjustment to the original model of atomic structure, we can no longer say that an electron occupies a particular orbit, but can only give the probability that it is there.

In 1939 he developed a theory of nuclear fission with Jon Archibald Wheeler (b.1911) and realised that the 235uranium isotope would be more susceptible to fission than the more commonly used 238uranium.
The element bohrium is named after him.

picture of the Nobel medal - link to nobelprize.org

Link to WIKIPEDIA

NEXT buttonTIMELINE

NEXT buttonTHE ATOM

NEXT buttonQUANTUM MECHANICS

MURRAY GELL-MANN (b.1929)

1964 – USA

‘Neutrons and protons are made up of particles called quarks. Like electrons, they cannot be subdivided further’

Photograph of MURRAY GELL-MANN ©

MURRAY GELL-MANN

The standard model of particle physics divides all elementary particles into three groups:

six types of leptons
electron, electron neutrino, muon, muon neutrino, tau and tau neutrino
six types of quarks
up, down, charm, strange, top and bottom    and
four types of bosons

   
Ordinary matter is made up of:

protons
each an up-up-down quark triplet
neutrons
each an up-down-down quark triplet    and
electrons

 

Gell-Mann predicted the existence of three quarks; up, down and strange. Other scientists predicted another three. Quarks cannot exist singly.

picture of the Nobel medal - link to nobelprize.org

Link to WIKIPEDIA

NEXT button - GORDON MOORETIMELINE

NEXT button - ABDUS SALAMSTANDARD MODEL