EPICURUS (341 – 270 BCE)

Third Century BCE

“Epicurus’s philosophy combines a physics based on an atomistic materialism with a rational hedonistic ethics that emphasizes moderation of desires and cultivation of friendships.”

Summarized by the Roman author Lucretius, who wrote ‘On the Nature of the Universe’ in 55 BCE – “The light and heat of the Sun; these are composed of minute atoms which, when they are shoved off, lose no time in shooting right across the interspace of air in the direction imparted by the shove”. This may be considered as accurate for the time, when most people thought that sight was associated with something reaching out from the eye (EMPEDOCLES) .

Plato wrote of a marriage between the inner light and the outer light.

Euclid worried about the speed with which sight worked. He pointed out that if you close your eyes, then open them again, even the distant stars reappear immediately in your sight, although the influence of sight has had to travel all the way from your eyes to the stars and back again before you could see them.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Advertisements

JOHN DALTON (1766-1844)

1801 England

‘The total pressure of a mixture of gases is the sum of the partial pressures exerted by each of the gases in the mixture’

Partial pressures of gases:
Dalton stated that the pressure of a mixture of gases is equal to the sum of the pressures of the gases in the mixture. On heating gases they expand and he realised that each gas acts independently of the other.

Each gas in a mixture of gases exerts a pressure, which is equal to the pressure it would exert if it were present alone in the container; this pressure is called partial pressure.

Dalton’s law of partial pressures contributed to the development of the kinetic theory of gases.

His meteorological observations confirmed the cause of rain to be a fall in temperature, not pressure and he discovered the ‘dew point’ and that the behaviour of water vapour is consistent with that of other gases.

He showed that a gas could dissolve in water or diffuse through solid objects.

Graph demonstrating the varying solubility of gases

The varying solubility of gases

Further to this, his experiments on determining the solubility of gases in water, which, unexpectedly for Dalton, showed that each gas differed in its solubility, led him to speculate that perhaps the gases were composed of different ‘atoms’, or indivisible particles, which each had different masses.
On further examination of his thesis, he realised that not only would it explain the different solubility of gases in water, but would also account for the ‘conservation of mass’ observed during chemical reactions – as well as the combinations into which elements apparently entered when forming compounds – because the atoms were simply ‘rearranging’ themselves and not being created or destroyed.

In his experiments, he observed that pure oxygen will not absorb as much water vapour as pure nitrogen – his conclusion was that oxygen atoms were bigger and heavier than nitrogen atoms.

‘ Why does not water admit its bulk of every kind of gas alike? …. I am nearly persuaded that the circumstance depends on the weight and number of the ultimate particles of the several gases ’

In a paper read to the Manchester Society on 21 October 1803, Dalton went further,

‘ An inquiry into the relative weight of the ultimate particles of bodies is a subject as far as I know, entirely new; I have lately been prosecuting this enquiry with remarkable success ’

Dalton described how he had arrived at different weights for the basic units of each elemental gas – in other words the weight of their atoms, or atomic weight.

Dalton had noticed that when elements combine to make a compound, they always did so in fixed proportions and went on to argue that the atoms of each element combined to make compounds in very simple ratios, and so the weight of each atom could be worked out by the weight of each element involved in a compound – the idea of the Law of Multiple Proportions.

When oxygen and hydrogen combined to make water, 8 grammes of oxygen was used for every 1 gramme of hydrogen. If oxygen consisted of large numbers of identical oxygen atoms and hydrogen large numbers of hydrogen atoms, all identical, and the formation of water from oxygen and hydrogen involved the two kinds of atoms colliding and sticking to make large numbers of particles of water (molecules) – then as water has an identity as distinctive as either hydrogen or oxygen, it followed that water molecules are all identical, made of a fixed number of oxygen atoms and a fixed number of hydrogen atoms.

Dalton realised that hydrogen was the lightest gas, and so he assigned it an atomic weight of 1. Because of the weight of oxygen that combined with hydrogen in water, he first assigned oxygen an atomic weight of 8.

There was a basic flaw in Dalton’s method, because he did not realise that atoms of the same element can combine. He assumed that a compound of atoms, a molecule, had only one atom of each element. It was not until Italian scientist AMADEO AVOGADRO’s idea of using molecular proportions was introduced that he would be able to calculate atomic weights correctly.

In his book of 1808, ‘A New System of Chemical Philosophy’ he summarised his beliefs based on key principles: atoms of the same element are identical; distinct elements have distinct atoms; atoms are neither created nor destroyed; everything is made up of atoms; a chemical change is simply the reshuffling of atoms; and compounds are made up of atoms from the relevant elements. He published a table of known atoms and their weights, (although some of these were slightly wrong), based on hydrogen having a mass of one.

Nevertheless, the basic idea of Dalton’s atomic theory – that each element has its own unique sized atoms – has proved to be resoundingly correct.

If oxygen atoms all had a certain weight which is unique to oxygen and hydrogen atoms all had a certain weight that was unique to hydrogen, then a fixed number of oxygen atoms and a fixed number of hydrogen atoms combined to form a fixed weight of water molecules. Each water molecule must therefore contain the same weight of oxygen atoms relative to hydrogen atoms.

Here then is the reason for the ‘law of fixed proportions’. It is irrelevant how much water is involved – the same factors always hold – the oxygen atoms in a single water molecule weigh 8 times as much as the hydrogen atoms.

Dalton wrongly assumed that elements would combine in one-to-one ratios as a base principle, only converting into ‘multiple proportions’ (for example from carbon monoxide, CO, to carbon dioxide, CO2) under certain conditions. Each water molecule (H2O) actually contains two atoms of hydrogen and one atom of oxygen. An oxygen atom is actually 16 times as heavy as a hydrogen atom. This does not affect Dalton’s reasoning.

The law of fixed proportions holds because a compound consists of a large number of identical molecules, each made of a fixed number of atoms of each component element.

Although the debate over the validity of Dalton’s thesis continued for decades, the foundation for the study of modern atomic theory had been laid and with ongoing refinement was gradually accepted.

A_New_System_of_Chemical_Philosophy - DALTON's original outline

A_New_System_of_Chemical_Philosophy

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE ATOMTHE ATOM

Related articles

<< top of page

JOSEPH LOUIS GAY-LUSSAC (1778-1850)

1808 – France

‘Volumes of gases which combine or which are produced in chemical reactions are always in the ratio of small whole numbers’

One volume of nitrogen and three volumes of hydrogen produce two volumes of ammonia. These volumes are in the whole number ratio of 1:3:2

N2 + 3H2 ↔ 2NH3

Along with his compatriot Louis Thenard, Gay-Lussac proved LAVOISIER’s assumption, that all acids had to contain oxygen, to be wrong.

portrait of GAY-LUSSAC ©

GAY-LUSSAC

Gay-Lussac re-examined JACQUES CHARLES’ unpublished and little known work describing the effect that the volume of a gas at constant pressure is directly proportional to temperature and ensured that Charles received due credit for his discovery.

Alongside JOHN DALTON, Gay-Lussac concluded that once pressure was kept fixed, near zero degrees Celsius all gases increased in volume by 1/273 the original value for every degree Celsius rise in temperature. At 10degrees, the volume would become 283/273 of its original value and at – 10degrees it would be 263/273 of that same original value. He extended this relation by showing that when volume was kept fixed, gas would increase or decrease the pressure exerted on the outside of the gas container by the same 1/273 factor when temperature was shifted by a degree Celsius. This did not depend upon the gas being studied and hinted at a deep connection shared by all gases. If the volume of a gas at fixed pressure decreased by 1/273 for every 1degree drop, it would reach zero volume at -273degrees Celsius. The same was true for pressure at fixed volume. That had to be the end of the scale, the lowest possible temperature one could reach. Absolute zero.

In an 1807 gas-experiment, Gay-Lussac took a large container with a removable divider down the middle and filled half with gas and made the other half a vacuüm. When the divider was suddenly removed, the gas quickly filled the whole container. According to caloric theory, temperature was a measure of the concentration of caloric fluid and removal of the divider should have led to a drop in temperature because the fluid was spread out over a greater volume without any loss of caloric fluid. (The same amount of fluid in a larger container means lower concentration).
Evidence linking heat to mechanical energy accumulated. Expenditure of the latter seemed to lead to the former.

Gay-Lussac was an experimentalist and his law was based on extensive experiments. The explanation of why gases combine in this way came from AVOGADRO.

Wikipedia-logo © (link to wikipedia)

NEXT button - JOHN DALTONTIMELINE

NEXT buttonGAS LAWS

JOHN DALTON

1808 – Manchester, England

‘All matter is made up of atoms, which cannot be created, destroyed or divided. Atoms of one element are identical but different from those of other elements. All chemical change is the result of combination or separation of atoms’

Dalton struggled to accept the theory of GAY-LUSSAC because he believed, as a base case, that gases would seek to combine in a one atom to one atom ratio (hence he believed the formula of water to be HO not H2O). Anything else would contradict Dalton’s theory on the indivisibility of the atom, which he was not prepared to accept.

The reason for the confusion was that at the time the idea of the molecule was not understood.
Dalton believed that in nature all elementary gases consisted of indivisible atoms, which is true for example of the inert gases. The other gases, however, exist in their simplest form in combinations of atoms called molecules. In the case of hydrogen and oxygen, for example, their molecules are made up of two atoms, described as H2 and O2 respectively.

Gay-Lussac examined various substances in which two elements form more than one type of compound and concluded that if two elements A and B combine to form more than one compound, the different masses of A that combine with a fixed mass of B are in a simple whole number ratio. This is the law of multiple proportions.

AVOGADRO’s comprehension of molecules helped to reconcile Gay-Lussac’s ratios with Dalton’s theories on the atom.

Gay-Lussac’s ratio for water could be explained by two molecules of hydrogen (four ‘atoms’) combining with one molecule of oxygen (two ‘atoms’) to result in two molecules of water (2H2O).

2H2 + O2 ↔ 2H2O

When Dalton had considered water, he could not understand how one atom of hydrogen could divide itself (thereby undermining his indivisibility of the atom theory) to form two particles of water. The answer proposed by Avogadro was that oxygen existed in molecules of two and therefore the atom did not divide itself at all.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE ATOM

WILLIAM PROUT (1785-1850)

1815 – UK

‘Atoms are not the smallest thing’

After ANTOINE LAVOISIER had compiled his list of the then known elements, another 32 were added in the years following his death. Fifty kinds of fundamental building blocks for matter seemed excessive. In 1815 Prout, using AVOGADRO’s method of comparing the relative densities and weights of gases, proposed that all atoms appeared to have weights that were exact multiples of the weight of the lightest atom, hydrogen, and that the different atomic weights of elements are whole-number multiples of the atomic weight of hydrogen (Prout’s hypothesis).

Portreait of William Prout (c) The University of Edinburgh Fine Art Collection; Supplied by The Public Catalogue Foundation

WILLIAM PROUT

He took this as proof that all atoms were actually made from hydrogen atoms and the idea was adopted as atomic theory and used for later investigations of atomic weights and the classification of the elements.

If all atoms are made from atoms of hydrogen, then it could be possible to transform an atom of one element into an atom of another.
If atoms had been assembled from other things, then they themselves could not be the smallest things in creation.

Apart from the method of weighing atoms being controversial, there are exceptions to the rule. Chlorine is 35.5 times as heavy as hydrogen.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

NEXT buttonTHE ATOM

SIR JOHN JOSEPH THOMSON (1856-1940)

1897 – England

’Not only was matter composed of particles not visible even with the modern microscope, as scientists from DEMOCRITUS to DALTON had surmised, but those particles were themselves composed of even smaller components’

photo of JJ THOMSON at work in the laboratory ©

JJ THOMSON

By the end of the nineteenth century scientists had cleared up much of the confusion surrounding atomic theory. The discovery of the sub-atomic particle was made in April 1897. They believed that they now largely understood the properties and sizes of the atoms of elements; without question, hydrogen was the smallest of all.

When JJ Thomson announced the discovery of a particle one thousandth the mass of the hydrogen atom the particles were named ‘electrons’ and have been a fundamental part of the understanding of atomic science ever since.

Thomson was investigating the properties of cathode rays, now known to be a simple stream of electrons, but at the time the cause of widespread debate. The rays were known to be visible, like normal light, but they were quite clearly not normal light. He devised a series of experiments, which would apply measurements to the cathode rays and clarify their nature. The rays were created by passing an electric charge through an airless or gasless discharge tube.

By improving the vacuüm in the tube, it was demonstrated that the rays could be deflected by electric and magnetic fields. Thomson drilled a hole in the anode of the tube to allow the mysterious rays from the cathode to pass through. In the space after the anode, he arranged that a magnetic force field from a magnet would tug the cathode rays in one direction, and an electric force field between two electrically charged metal plates would tug them in the opposite direction. The rays would eventually strike the glass wall of the tube to create a familiar greenish spot of light on the phosphor-coated tube.

Thomson concluded that the rays were made up of particles, not waves. He saw that the properties of the particles were negative in charge and didn’t seem to be specific to any one element; they were the same regardless of the gas used to transport the electric discharge, or the metal used at the cathode. From his findings he concluded that cathode rays were made up of a jet of ‘corpuscles’ and, more importantly, that these corpuscles were present in all elements. Thomson devised a method of measuring the mass of the particles and found them to be a fraction of the weight of the hydrogen atom.

The position of the spot indicated how much the beam of cathode rays had been deflected. The deflection could be made zero by adjusting the magnetic and electric forces so that they perfectly balanced. In such a situation, Thomson could read off the strength of the electric force. He knew in theory how the magnetic force on a charged particle depends on its speed. By equating the two forces, he was able to deduce the speed of the cathode rays. The deflection was also influenced by the electric charge carried by the cathode ray particles, and their mass. The larger the charge, the greater the force the particles felt and the greater their deflection, the smaller the mass, the easier it was for any force to push the particles about and again, the greater their deflection.

Independent evidence from electrolysis (passing electricity through liquids) that electric charge came in discreet chunks, which he assumed to be carried by individual cathode ray particles, enabled Thomson to calculate their mass.
He arrived at a figure that was a thousand billion billion billionth of a kilogram – a 1000th of the mass of a hydrogen atom.

Knowing the deflection of the dot and the velocity of the particles (the slower the particles, the longer they were exposed to the electric force and the greater the deflection of the glowing dot), Thomson expected to be able to deduce their charge and mass. What he actually deduced was a combination of their charge and mass.

Atoms were made of smaller things, but the fundamental building-blocks were not hydrogen atoms, as had been maintained by PROUT.

Thomson’s particles were christened ‘electrons’ and were the first subatomic entities. Thomson visualized a multitude of tiny electrons embedded ‘like raisins in a plum pudding’ in a diffuse ball of positive charge.

‘The atom is a sphere of positively charged protons in which negatively charged electrons are embedded in just sufficient quantity to neutralise the positive charge’

This was the accepted picture of the atom at the start of the twentieth century until RUTHERFORD found a way to probe inside the atom in 1911.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonTHE ATOM

Related sites

<< top of page

ANTOINE-HENRI BECQUEREL (1852-1908)

1898 – France

BECQUEREL

BECQUEREL

‘1903 – Awarded the Nobel-Prize for Physics jointly with Marie and Pierre Curie’

picture of a rock displaying fluorescence under short wavelength radiation

The phenomenon of fluorescence – displayed under short wavelength radiation

Stimulated by WILHELM CONRAD ROENTGEN’s discovery of X-rays in 1895, Becquerel chanced upon the phenomenon that is now known as radioactivity in 1896. The Frenchman believed that Röntgen’s X-rays were responsible for the fluorescence displayed by some substances after being placed in sunlight. Although he was wrong to assume that fluorescence had anything to do with X-rays, he tested large numbers of fluorescent minerals.

He found that uranium, the heaviest element, caused an impression on a covered photographic plate, even after being kept in the dark for several days, and concluded that a phenomenon independent of sunlight induced luminescence.
Investigation isolated the uranium as the source of ‘radioactivity’, a name given to the occurrence by Mme. Curie.

The SI unit of radioactivity, the becquerel is named in his honour.

picture of the Nobel medal - link to nobelprize.org

Wikipedia-logo © (link to wikipedia)

NEXT button - MARIE CURIE (1867-1934) PIERRE CURIE (1859-1906)TIMELINE

  • Radioactivity (aps.org)