CHRISTIAN THEOLOGY & WESTERN SCIENCE

bust said to depict a likeness of Socrates

The speculative Greek philosophers, considering the great overarching principles that controlled the Cosmos, were handicapped by a reluctance to test their speculations by experimentation.
At the other end of the spectrum were the craftsmen who fired and glazed pottery, who forged weapons out of bronze and iron. They in turn were hindered by their reluctance to speculate about the principles that governed their craft.

WESTERN SCIENCE is often credited with discoveries and inventions that have been observed in other cultures in earlier centuries.
This can be due to a lack of reliable records, difficulty in discerning fact from legend, problems in pinning down a finding to an individual or group or simple ignorance.

The Romans were technologists and made little contribution to pure science and then from the fall of Rome to the Renaissance science regressed. Through this time, science and technology evolved independently and to a large extent one could have science without technology and technology without science.

Later, there developed a movement to ‘Christianise Platonism’ (Thierry of Chartres).

Platonism at its simplest is the study and debate of the various arguments put forward by the Greek philosopher PLATO (428/7-348/7 BCE).
The philosopher Plotinus is attributed with having founded neo-Platonism, linking Christian and Gnostic beliefs to debate various arguments within their doctrines. One strand of thought linked together three intellectual states of being: the Good (or the One), the Intelligence and the Soul. The neo-Platonic Academy in Greece was closed by the Emperor Justinian (CE 483-565) in CE 529.
During the early years of the Renaissance, texts on neo-platonism began to be reconsidered, translated and discoursed.

Aristotle’s four causes from the ‘Timaeus’ were attributed to the Christian God, who works through secondary causes (such as angels).

Efficient Cause – Creator – God the Father

Formal Cause – Secondary agent – God the Son

Material Cause – The four elements: earth, air, fire & water.
Because these four are only fundamental forms of the single type of matter, they cannot be related to any idea of ‘elements’ as understood by modern science – they could be transmuted into each other. Different substances, although composed of matter would have different properties due to the differing amounts of the qualities of form and spirit. Thus a lump of lead is made of the same type of matter (fundamental form) as a lump of gold, but has a different aggregation of constituents. Neither lead nor gold would contain much spirit – not as much as air, say, and certainly not as much as God, who is purely spiritual. ( ALCHEMY )

Final Cause – Holy Spirit

All other is ‘natural’ – underwritten by God in maintaining the laws of nature without recourse to the supernatural.
Science was the method for investigating the world. It involved carrying out careful experiments, with nature as the ultimate arbiter of which theories were right and which were wrong.

Robert Grosseteste (1168-1253) Bishop of Lincoln (Robert ‘Bighead’) – neo-platonic reading of Genesis – emanation of God’s goodness, like light, begins creation. Light is thus a vehicle of creation and likewise knowledge (hence ‘illumination’), a dimensionless point of matter with a dimensionless point of light superimposed upon it (dimensions are created by God). Spherical radiation of light carries matter with it until it is dissipated. Led to studies of optical phenomena (rainbow, refraction, reflection).

stained glass window depicting Robert Grosseteste (created 1896)

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Advertisements

ROBERT HOOKE (1635-1703)

1670 – England

‘Within the limits of elasticity, the extension ( Strain ) of an elastic material is proportional to the applied stretching force ( Stress )’

Hooke’s law applies to all kinds of materials, from rubber balls to steel springs. The law helps define the limits of elasticity of a material.

In equation form; the law is expressed as F = kx, where F is force, x change in length and k is a constant. The constant is known as Young’s Modulus, after THOMAS YOUNG who in 1802 gave physical meaning to k.

Boyle and Hooke formed the nucleus of scientists at Gresham College in Oxford who were to create the Royal Society in 1662 and Hooke served as its secretary until his death. Newton disliked Hooke’s combative style (Hooke accused Newton of plagiarism, sparking a lifelong feud between the two) and refused to attend Royal Society meetings while Hooke was a secretary.

Hooke mistrusted his contemporaries so much that when he discovered his law he published it as a Latin anagram, ceiiinosssttvu, in his book on elasticity.

Two years later, when he was sure that the law could be proved by experiments on springs, he revealed that the anagram meant Ut tensio sic vis. That is, the power of any spring is in the same proportion with the tension thereof.

At the same time, in 1665 Hooke published his work Micrographia presenting fifty-seven illustrations drawn by him of the wonders seen with the microscope.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

Related sites

ISAAC NEWTON (1642-1727)

1687 – England

‘Any two bodies attract each other with a force proportional to the product of their masses and inversely proportional to the square of the distance between them’

portrait of NEWTON ©

NEWTON

The force is known as gravitation
Expressed as an equation:

F = GmM/r2

where F is Force, m and M the masses of two bodies, r the distance between them and G the gravitational constant
This follows from KEPLER’s laws, Newton’s laws of motion and the laws of conic sections. Gravitation is the same thing as gravity. The word gravity is particularly used for the attraction of the Earth for other objects.

Gravitation
Newton stated that the law of gravitation is universal; it applies to all bodies in the universe. All historical speculation of different mechanical principles for the earth from the rest of the cosmos were cast aside in favour of a single system. He demonstrated that the planets were attracted toward the Sun by a force varying as the inverse square of the distance and generalized that all heavenly bodies mutually attract one another. Simple mathematical laws could explain a huge range of seemingly disconnected physical facts, providing science with the straightforward explanations it had been seeking since the time of the ancients. That the constant of gravitation is in fact constant was proved by careful experiment, that the focus of a body’s centre of gravity appears to be a point at the centre of the object was proved by his calculus.

Calculus
The angle of curve, by definition, is constantly changing, so it is difficult to calculate at any particular point. Similarly, it is difficult to calculate the area under a curve. Using ARCHIMEDES’ method of employing polygons and rectangles to work out the areas of circles and curves, and to show how the tangent or slope of any point of a curve can be analyzed, Newton developed his work on the revolutionary mathematical and scientific ideas of RENE DESCARTES, which were just beginning to filter into England, to create the mathematics of calculus. Calculus studies how fast things change.
The idea of fluxions has become known as differentiation, a means of determining the slope of a line, and integration, of finding the area beneath a curve.

Newton’s ideas on universal gravitation did not emerge until he began a controversial correspondence with ROBERT HOOKE in around 1680. Hooke claimed that he had solved the problem of planetary motion with an inverse square law that governed the way that planets moved. Hooke was right about the inverse square law, but he had no idea how it worked or how to prove it, he lacked the genius that permitted Newton to combine Kepler’s laws of planetary motion with the assumption that an object falling towards Earth was the same kind of motion as the Earth’s falling toward the Sun.
It was not until EDMUND HALLEY challenged Newton in 1684 to show how planets could have the elliptical orbits described by Johannes Kepler, supposing the force of attraction by the Sun to be the reciprocal of their distance from it – and Newton replied that he already knew – that he fully articulated his laws of gravitation.

It amounts to deriving Kepler’s first law by starting with the inverse square hypothesis of gravitation. Here the Sun attracts each of the planets with a force that is inversely proportional to the square of the distance of the planet from the Sun. From Kepler’s second law, the force acting on the planets is centripetal. Newton says this is the same as gravitation.

In the previous half century, Kepler had shown that planets have elliptical orbits and GALILEO had shown that things accelerate at an even pace as they fall towards the ground. Newton realized that his ideas about gravity and the laws of motion, which he had only applied to the Earth, might apply to all physical objects, and work for the heavens too. Any object that has mass will be pulled towards any other object. The larger the mass, the greater the pull. Things were not simply falling but being pulled by an invisible force. Just as this force (of gravity) pulls things towards the Earth, it also keeps the Moon in its orbit round the Earth and the planets moving around the Sun. With mathematical proofs he showed that this force is the same everywhere and that the pull between two things depends on their mass and the square of the distance between them.

Title page of Philosophiae Naturalis Principia Mathematica

Title page of Philosophiae Naturalis Principia Mathematica

Newton published his law of gravitation in his magnum opus Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) in 1687. In it Newton analyzed the motion of orbiting bodies, projectiles, pendulums and free fall near the Earth.

The first book of Principia states the laws of motion and deals with the general principles of mechanics. The second book is concerned mainly with the motion of fluids. The third book is considered the most spectacular and explains gravitation.

Why do two objects attract each other?
‘I frame no hypotheses’, said Newton

It was Newton’s acceptance of the possibility that there are mysterious forces in the world, his passions for alchemy and the study of the influence of the Divine that led him to the idea of an invisible gravitational force – something that the more rationally minded Galileo had not been able to accept.
Newton’s use of mathematical expression of physical occurrences underlined the standard for modern physics and his laws underpin our basic understanding of how things work on an everyday scale. The universality of the law of gravitation was challenged in 1915 when EINSTEIN published the theory of general relativity.

1670-71 Newton composes ‘Methodis Fluxionum‘, his main work on calculus, which is not published until 1736. His secrecy meant that in the intervening period, the German mathematician LEIBNIZ could publish his own independently discovered version – he gave it the name calculus, which stuck.

LAWS OF MOTION

1687 – England

  • First Law: An object at rest will remain at rest and an object in motion will remain in motion at that velocity until an external force acts on the object

  • Second Law: The sum of all forces (F) that act on an object is equal to the mass (m) of the object multiplied by the acceleration (a), or F = ma

  • Third Law: To every action, there is an equal and opposite reaction

The first law

introduces the concept of inertia, the tendency of a body to resist change in its velocity. The law is completely general, applying to all objects and any force. The inertia of an object is related to its mass. Things keep moving in a straight line until they are acted on by a force. The Moon tries to move in a straight line, but gravity pulls it into an orbit.
Weight is not the same as mass.

The second law

explains the relationship between mass and acceleration, stating that a force can change the motion of an object according to the product of its mass and its acceleration. That is, the rate and direction of any change depends entirely on the strength of the force that causes it and how heavy the object is. If the Moon were closer to the Earth, the pull of gravity between them would be so strong that the Moon would be dragged down to crash into the Earth. If it were further away, gravity would be weaker and the Moon would fly off into space.

The third law

shows that forces always exist in pairs. Every action and reaction is equal and opposite, so that when two things crash together they bounce off one another with equal force.

LIGHT

1672 – New Theory about Light and Colours is his first published work and contains his proof that white light is made up of all colours of the spectrum. By using a prism to split daylight into the colours of the rainbow and then using another to recombine them into white light, he showed that white light is made up of all the colours of the spectrum, each of which is bent to a slightly different extent when it passes through a lens – each type of ray producing a different spectral colour.

Newton also had a practical side. In the 1660s his reflecting telescope bypassed the focusing problems caused by chromatic aberration in the refracting telescope of the type used by Galileo. Newton solved the problem by swapping the lenses for curved mirrors so that the light rays did not have to pass through glass but reflected off it.

At around the same time, the Dutch scientist CHRISTIAAN HUYGENS came up with the convincing but wholly contradictory theory that light travels in waves like ripples on a pond. Newton vigorously challenged anyone who tried to contradict his opinion on the theory of light, as Robert Hooke and Leibniz, who shared similar views to Huygens found out. Given Newton’s standing, science abandoned the wave theory for the best part of two hundred years.

1704 – ‘Optiks’ published. In it he articulates his influential (if partly inaccurate) particle or corpuscle theory of light. Newton suggested that a beam of light is a stream of tiny particles or corpuscles, traveling at huge speed. If so, this would explain why light could travel through a vacuüm, where there is nothing to carry it. It also explained, he argued, why light travels in straight lines and casts sharp shadows – and is reflected from mirrors. His particle theory leads to an inverse square law that says that the intensity of light varies as the square of its distance from the source, just as gravity does. Newton was not dogmatic in Optiks, and shows an awareness of problems with the corpuscular theory.

In the mid-eighteenth century an English optician John Dolland realized that the problem of coloured images could largely be overcome by making two element glass lenses, in which a converging lens made from one kind of glass was sandwiched together with a diverging lens made of another type of glass. In such an ‘achromatic’ lens the spreading of white light into component colours by one element was cancelled out by the other.

During Newton’s time as master of the mint, twenty-seven counterfeiters were executed.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

GRAVITYGRAVITY

LIGHTLIGHT

Related articles

CHRISTIAAN HUYGENS (1629- 95)

1690 – Holland

portrait of CHRISTIAAN HUYGENS ©

HUYGENS

‘Every point on a wavefront can act as a new source of waves’

A line perpendicular to the wave fronts is called a ray and this ray shows the direction of the wave.

The Huygens construction, published in ‘Traite de la Lumiere‘ (’Treatise on Light’, 1690) gives an explanation for the way light is reflected and refracted.

Huygens said that light consists of a disturbance spreading from its source as spherical pressure waves having wave fronts perpendicular to the direction of their motion and correctly anticipated that in a denser medium light would travel more slowly. This hypothesis was largely ignored at the time as it conflicted with NEWTON‘s theory. Huygens’ view, when re-discovered and championed by THOMAS YOUNG (1773-1829) would eventually become the more commonly accepted version.

He invented a pendulum clock (1656) and also discovered Titan, the first observed moon of Saturn (1665).

Saturn's moon Titan. Notable Features - Relatively smooth surface with almost no craters; Color variation across the planet (previously thought to be seas of methane, but that has been disproved. True origin has not been discovered.) At least one lake of liquid ethane is on the surface at the present time

Huygens discovered that a simple pendulum does not keep perfect time but completes smaller swings faster than big swings. This is because the weight or ‘bob’ of the pendulum follows a circular path. Huygens’ realisation that a pendulum mimicking a circle’s curve does not maintain a perfectly equal swing and that in order to do this it actually needs to follow a ‘cycloidal’ arc, set him on the path to designing the first successful pendulum clock.

Published ‘Horologium‘ (1658), ‘Horologium Oscillatorium‘ (1673) in which he showed that if the bob’s path were a cycloid (the curved path traced out by a point on the rim of a wheel as it rolls along) instead of a circle, it would be isynchronous (keeping equal time) no matter what the length of the swing. He made the pendulum’s swing cycloidal by suspending a rigid pendulum rod on two chords whose swing either way was limited by two plates called cycloidal checks.

GALILEO had considered the timekeeping possibilities of a swinging pendulum and Huygens successfully tied it with an escapement mechanism.
He explored the mathematics associated with pendulums – which led him, together with HOOKE, to an early prediction of the link between the elliptical orbits of the planets and the inverse square law of gravity. His work was a milestone, playing a key part in the understanding of centrifugal force. It helped to confirm Newton’s laws of motion by showing how an object will travel in a straight line unless pulled into a curved path by some other force.

Huygens was one of the founders of the French Académie des sciences in Paris.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

THE STARSTHE STARS

Related sites

DANIEL BERNOULLI (1700- 82) JAMES CLERK MAXWELL (1831- 79)

1738 – Switzerland
1859 – England

‘Gases are composed of molecules which are in constant random motion and their properties depend upon this motion’

The volume of a gas is simply the space through which molecules are free to move. Collisions of the molecules with each other and the walls of a container are perfectly elastic, resulting in no decrease in kinetic energy. The average kinetic energy of a gas increases with an increase in temperature and decreases with a decrease in temperature. The theory has been extended to provide a model for two states of matter – liquids and solids.

Bernoulli had a great advantage over DEMOCRITUS. He knew that free atoms were more than simply tiny grains flying though space; they were tiny grains flying through space and obeying NEWTON’s Laws of Motion.
Bernoulli proposed a ‘bombardment theory’, which stated that a gas consisted of tiny particles in rapid, random motion like a swarm of angry bees. He realized that in the case of such a gas visualized as a host of tiny grains in perpetual frenzied motion, the atoms hammering relentlessly on the walls of any containing vessel would produce a force by bombarding the container. The effect of each individual impact would of course be vanishingly small. The effect of billions upon billions of atoms, hammering away incessantly, however, would be to push the walls back. A gas made of atoms would exert a jittery force that we would detect as a ‘pressure’.

Heating a gas would make its particles move faster.
The pressure of a gas such as steam was easy to measure using a piston in a hollow container. This was essentially a moveable wall. To deduce how the pressure of a gas would be affected by different conditions, Bernoulli first made some simplifying assumptions. He assumed the atoms were very small compared to the gulf between them. This allowed Bernoulli to ignore any force – whether of attraction or repulsion – that existed between them, as being unlikely to be ‘long range’. (This is an ‘ideal’ or ‘perfect’ gas. The behaviour of a real gas may differ from the ideal, for example at very high pressure). With the motion of each atom unaffected by its fellows, Newton’s laws dictated that it should fly at a constant speed in a straight line. The exception was when it slammed into a piston or the walls of the container. Bernoulli assumed that in such a collision a gas atom bounced off the walls of the surface without losing any speed, in the process imparting a miniscule force to the wall.

What would happen if the volume of the gas were reduced by applying an outside force to the piston? If the gas were reduced to half its original volume, the atoms would now have to fly only half as far between collisions, in any given time they would collide with the piston twice as many times and would exert twice the pressure. Similarly, if the gas were compressed to a third of its volume, its pressure would triple. This had been observed by ROBERT BOYLE in 1660 and named Boyle’s Law.

What would happen to the pressure of gas in a closed cylinder if the gas were heated while its volume remained unchanged? Exploiting the insight that the temperature of a gas was a measure of how fast on average its atoms were flying about, that when a gas was heated, its atoms speeded up, he deduced that as the atoms would be moving faster they would collide with the piston more often and create a greater force. Consequently the pressure of the gas would rise. This was observed by the French scientist JACQUES ALEXANDRE CESARE CHARLES in 1787, and christened Charles’ law.

After 120 years MAXWELL polished Bernoulli’s ideas into a rigorous mathematical theory. In Germany, LUDWIG  BOLTZMANN championed the atomic hypothesis, but was refuted by the Austrian ERNST MACH, who was convinced that science should not concern itself with any feature of the world that could not be observed directly with the senses.

BERNOULLI’S PRINCIPLE

‘As the velocity of a liquid or gas increases, its pressure decreases; and when the velocity decreases, its pressure increases’

At a narrow constriction in a pipe or tube, the speed of a gas or liquid is increased, but its pressure is decreased, according to Bernoulli’s principle. This effect is named the Venturi effect (and a pipe or tube with a narrow constriction the Venturi tube) after the Italian G.B. Venturi (1746-1822) who first observed it in constrictions in water channels. An atomiser works on the same principle.

 

The principle is expressed as a complex equation, but it can be summed up simply as the faster the flow the lower the pressure.

An aircraft wing’s curved upper surface is longer than the lower one, which ensures that air has to travel further and so faster over the top than it does below the wing. Hence the air pressure underneath is greater than on top of the wing, causing an upward force, called lift.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonMECHANICS

THOMAS YOUNG (1773-1829)

1801 – England

‘Interference between waves can be constructive or destructive’

Huygens‘ wave theory was neglected for more than a hundred years until it was revived by Young in the opening years of the nineteenth century. Young rejected Newton‘s view that if light consisted of waves it would not travel in a straight line and therefore sharp shadows would not be possible. He said that if the wavelength of light was extremely small, light would not spread around corners and shadows would appear sharp. His principle of interference provided strong evidence in support of the wave theory.

Young’s principle advanced the wave theory of light of CHRISTIAAN HUYGENS. Further advances came from EINSTEIN and PLANCK.

In Young’s double slit experiment a beam of sunlight is allowed to enter a darkened room through a pinhole. The beam is then passed through two closely spaced small slits in a cardboard screen. You would expect to see two bright lights on a screen placed behind the slits. Instead a series of alternate light and dark stripes are observed, known as interference fringes, produced when one wave of light interferes with another wave of light.

Two identical waves traveling together either reinforce each other (constructive interference) or cancel each other out (destructive interference). This effect is similar to the pattern produced when two stones are thrown into a pool of water.

portrait of THOMAS YOUNG ©

THOMAS YOUNG

The mathematical explanation of this effect was provided by AUGUSTIN FRESNEL (1788-1827). The wave theory was further expanded by EINSTEIN in 1905 when he showed that light is transmitted as photons.

Light, an electromagnetic radiation, is transported in photons that are guided along their path by waves. This is known as ‘wave-particle duality’.

The current view of the nature of light is based on quantum theory.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonWAVES

Related sites

MICHAEL FARADAY (1791-1869)

1831 – England

‘A changing magnetic field around a conductor produces an electric current in the conductor. The size of the voltage is proportional to the rate of change of the magnetic field’

portrait drawing of MICHAEL FARADAY English chemist and physicist (British Library) (1791-1867)

This phenomenon is called ‘electromagnetic induction’ and the current produced ‘induced current’. Induction is the basis of the electric generator and motor.

Faraday developed HANS CHRISTIAN OERSTED’s 1820 discovery that electric current could deflect a compass needle. In his experiment Faraday wrapped two coils of insulated wire around opposite sides of an iron ring. One coil was connected to a battery, the other to a wire under which lay a magnetic compass needle. He anticipated that if he passed a current through the first wire it would establish a field in the ring that would induce a current in the second wire. He observed no effect when the current was steady but when he turned the current on and off he noticed the needle moving. He surmised that whenever the current in the first coil changed, current was induced in the second. To test this concept he slipped a magnet in and out of a coil of wire. While the magnet was moving the compass needle registered a current, as he pushed it in it moved one way, as he pulled it out the needle moved in the opposite direction. This was the first production of electricity by non-chemical means.

In 1831, by rotating a copper disc between the poles of a magnet, Faraday was able to produce a steady electric current. This was the world’s first dynamo.

NEWTON, with his concept of gravity, had introduced the idea of an invisible force that exerted its effect through empty space, but the idea of ‘action-at-a-distance’ was rejected by an increasing number of scientists in the early nineteenth century. By 1830, THOMAS YOUNG and AUGUSTIN FRESNEL had shown that light did not travel as particles, as Newton had said, but as waves or vibrations. But if this was so, what was vibrating? To answer this, scientists came up with the idea of a weightless matter, or ‘aether’.

Faraday had rejected the concept of electricity as a ‘fluid’ and instead visualised its ‘fields’ with lines of force at their edges – the lines of force demonstrated by the pattern of iron fillings around a magnet. This meant that action at a distance simply did not happen, but things moved only when they encountered these lines of force. He believed that magnetism was also induced by fields of force and that it could interrelate with electricity because the respective fields cut across each other. Proving this to be true by producing an electric current via magnetism, Faraday had demonstrated electromagnetic induction.

When Faraday was discovering electromagnetic induction he did so in the guise of a natural philosopher. Physics, as a branch of science, was yet to be given a name.

The Russian physicist HEINRICH LENZ (1804- 65) extended Faraday’s work when in 1833 he suggested that ‘the changing magnetic field surrounding a conductor gives rise to an electric current whose own magnetic field tends to oppose it.’ This is now known as Lenz’s law. This law is in fact LE CHATELIER‘s principle when applied to the interactions of currents and magnetic fields.

Fluctuating_Electromagnetic_Fields_and_EM_Waves

Fluctuating Electromagnetic Fields and EM Waves

It took a Scottish mathematician by the name of JAMES CLERK MAXWELL to provide a mathematical interpretation of Faraday’s work on electromagnetism.

Describing the complex interplay of electric and magnetic fields, he was able to conclude mathematically that electromagnetic waves move at the speed of light and that light is just one form of electromagnetic wave.
This led to the understanding of light and radiant heat as moving variations in electromagnetic fields. These moving fields have become known collectively as radiation.

Faraday continued to investigate the idea that the natural forces of electricity, magnetism, light and even gravity are somehow ‘united’, and to develop the idea of fields of force. He focused on how light and gravity relate to electromagnetism.
After conducting experiments using transparent substances, he tried a piece of heavy lead glass, which led to the discovery of the ‘Faraday Effect’ in 1845 and proved that polarised light may be affected by a magnet. This opened the way for enquiries into the complete spectrum of electromagnetic radiation.

In 1888 the German physicist HEINRICH HERTZ confirmed the existence of electromagnetic waves – in this case radio waves – traveling at the speed of light.

The unit of capacitance, farad (F) is named in honour of Faraday.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonELECTRICITY

Faraday Lecture -‘The chemical history of a candle’
Faraday as a discoverer

<< top of page