EPICURUS (341 – 270 BCE)

Third Century BCE

“Epicurus’s philosophy combines a physics based on an atomistic materialism with a rational hedonistic ethics that emphasizes moderation of desires and cultivation of friendships.”

Summarized by the Roman author Lucretius, who wrote ‘On the Nature of the Universe’ in 55 BCE – “The light and heat of the Sun; these are composed of minute atoms which, when they are shoved off, lose no time in shooting right across the interspace of air in the direction imparted by the shove”. This may be considered as accurate for the time, when most people thought that sight was associated with something reaching out from the eye (EMPEDOCLES) .

Plato wrote of a marriage between the inner light and the outer light.

Euclid worried about the speed with which sight worked. He pointed out that if you close your eyes, then open them again, even the distant stars reappear immediately in your sight, although the influence of sight has had to travel all the way from your eyes to the stars and back again before you could see them.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

ALCHEMY

photo of an ancient document showing some of the symbols commonly used by alchemists

Alchemical symbols

Understanding of the alchemists is hampered by their predilection for making their writings incomprehensible ( instant knowledge was not to be available to the uninitiated ) and the popular view that their quest was simply to isolate the Philosophers’ Stone and to use it to transform base metals into gold. There was in fact a genuine search for mental and spiritual advance

Using a world-view totally unlike that recognised today, the alchemists’ ideas of ‘spirit’ and ‘matter’ were intermingled – the ability to use ‘spirit’ in their experiments was the difficult part.

alchemical symbol for gold

To transform copper to gold: – copper could be heated with sulphur to reduce it to its ‘basic form’ (a black mass which is in fact copper sulphide) – its ‘metallic form’ being ousted by the treatment. The idea of introducing the ‘form of gold’ to this mass by manipulating and mixing suitable quantities of spirit stymied alchemists for over fifteen centuries.

Whilst this transmutation of metals was the mainstream concern of alchemy, there emerged in the sixteenth century a school that brought the techniques and philosophies of alchemy to bear on the preparation of medicines, the main figures involved being PARACELSUS and JOHANN VAN HELMONT.

Wikipedia-logo © (link to wikipedia)

cartoon of ALCHEMISTS AT WORK

ALCHEMISTS AT WORK

THE EIGHTEENTH CENTURY

COMBUSTION and PHLOGISTON

Noticing that burning a candle in an upturned container, the open end of which is submerged in water, causes the water to rise into the container, Philon of Byzantium inferred correctly that some of the air in the container had been used up in the combustion. However, he proposed that this is because this portion of the air had been converted into ‘fire particles’, which were smaller than ‘air particles’.

In 1700 the German physician Georg Ernst Stahl (1660-1734) invoked ‘phlogiston’ to explain what happens when things burn. He suggested that a burning substance was losing an undetectable elementary principle analogous to the ‘sulfur’ of J’BIR IHBIN AYAM, which he re-named ‘phlogiston’. This could explain why a log (rich in phlogiston) could seem to be heavier than its ashes (deficient in phlogiston). The air that is required for burning served to transport the phlogiston away.

The English chemist JOSEPH PRIESTLY (1733-1804), although a supporter of the phlogiston theory, ironically contributed to its downfall. He heated mercury in air to form red mercuric oxide and then applied concentrated heat to the oxide and noticed that it decomposed again to form mercury whilst giving off a strange gas in which things burnt brightly and vigorously. He concluded that this gas must be ‘phlogiston poor’.

Priestly combined this result with the work of the Scottish physician Daniel Rutherford (1749-1819), who had found that keeping a mouse in an enclosed airtight space resulted in its death (by suffocation) and that nothing could be burnt in the enclosed atmosphere; he formed the idea that the trapped air was so rich in phlogiston that it could accept no more. Rutherford called this ‘phlogisticated air’ and so Priestly called his own gas ‘dephlogisticated air’.

In 1774 Priestley visited the French chemist ANTOINE LAVOISIER (1743-1794).
Lavoisier repeated Priestly’s experiments with careful measurements.
Reasoning that air is made up of a combination of two gases – one that will support combustion and life, another that will not; what was important about Lavoisier’s experiments was not the observation – others had reached a similar conclusion – but the interpretation.

Lavoisier called Priestley’s ‘dephlogisticated air’, ‘oxygene’, meaning ‘acidifying principle’, believing at the time that the active principle was present in all acids (it is not). He called the remaining, ‘phlogisticated’, portion of normal air, ‘azote’, meaning ‘without life’

Oxygen is the mirror image of phlogiston. In burning and rusting (the two processes being essentially the same) a substance picks up one of the gases from the air. Oxygen is consumed, there is no expulsion of ‘phlogiston’.

Lavoisier had been left with almost pure nitrogen, which makes up about four fifths of the air we breath. We now know azote as nitrogen. Rutherford’s ‘mephitic air’ was carbon dioxide.

CALORIC

Like phlogiston, caloric was a weightless fluid, rather like elemental fire, a quality that could be transmitted from one substance to another, so that the first warmed the second up.

It was believed that all substances contained caloric and that when a kettle was being heated over a fire, the fuel gave up its caloric to the flame, which passed it into the metal, which passed it on to the water. Similarly, two pieces of wood rubbed together would give heat because abrasion was releasing caloric trapped within.

What is being transmitted is heat energy. It was the crucial distinction between the physical and the chemical nature of substances that confused the Ancients and led to their minimal elemental schemes.

NEXT buttonCHRISTIAN THEOLOGY & WESTERN SCIENCE

NEXT buttonHEAT

ROGER BACON (1214- 94)

(Doctor Mirabilis) ‘The Marvelous Doctor’

(Franciscan friar) Oxford – 1257

‘Mathematics (The first of the sciences, the alphabet of philosophy, door & key to the sciences), not Logic, should be the basis of all study’

Converted from Aristotelian to a neo-Platonist.

Etching of ROGER BACON Franciscan friar (1214- 94)

ROGER BACON

The Multiplication of Species; the means of causation (change) radiate from one object to another like the propagation of light.

‘An agent directs its effect to making the recipient similar to itself because the recipient is always potentially what the agent is in actuality.’

Thus heat radiating from a fire causes water placed near the fire,
but not in it, to become like the fire (hot). The quality of fire is multiplied in the water (multiplication of species).

All change may be analysed mathematically. Every multiplication is according to line, angles or figures. This thinking comes from the ninth century al-Kinde and his thoughts on rays and leads to a mathematical investigation into light.

Fear of the Mongols, Muslims and the Anti-Christ motivated the Franciscans. Franciscan neo-Platonism was based on Augustinian thought with a mathematical, Pythagorean, approach to nature. Bacon subscribed to this apocalyptical view, suffered trial and was imprisoned.
The Dominicans chose Aristotle – with a qualitative, non-mathematical approach to the world.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

THOMAS NEWCOMEN (1663-1729)

1712 – England

‘Uses the property of condensing steam to create a partial vacuüm in a cylinder and therefore pull a piston. The system was highly inefficient but was used to pump water from mines’

Today, the credit for the steam engine is usually given to James Watt, while the name Thomas Newcomen remains shrouded in obscurity.

The design of his low-pressure steam engine involved heating water underneath a large piston that was encased in a cylinder.

Steam that was released as a result of the heating forced the piston upwards. A jet of water was then released from a tank above the piston. The sudden cooling of the steam made it condense, creating a partial vacuüm which atmospheric pressure then pushed down on, forcing the piston downwards again. The piston was attached to a two-headed lever, the other side of which was attached to a pump in the mineshaft. As it moved up and down, the lever moved likewise and a pumping motion was created in the shaft, which could be used to eject floodwater.

The first engine could remove about 120 gallons per minute, completing about twelve strokes in that time, and had the equivalent of about 5.5 horsepower. Even though the engine was still not particularly powerful, was hugely inefficient to run, and burnt huge amounts of coal, it would work reliably 24-hours a day.

The steam engine originally developed by Newcomen for work in the mines was quickly developed by engineers like JAMES WATT and RICHARD TREVITHICK (1771-1833) into the steam locomotive.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

JOSEPH BLACK (1728- 99)

1757 – Edinburgh

‘Different quantities of heat are required to bring equal weights of different materials to the same temperature’

This definition relates to the concept of specific heat.

Through meticulous experimentation and measurement of results he discovered the concept of ‘latent heat’, the ability of matter to absorb heat without necessarily changing in temperature.
True in the transformation of ice into water at 0degrees C, the same principle applies in the process of transforming water to steam and indeed, all solids to liquids and all liquids to gases.
Through this work Black made the important distinction between heat and temperature.

JAMES WATT benefited from these discoveries during his development of the condensing steam engine.

‘Fixed Air’

Black’s insistence on the importance of quantitative experiments was a step towards setting the standard for modern chemistry.

Black found that heating or treating carbonate salts with acid resulted in the release of a gas that, he reasoned, must have been ‘fixed’ in the solids. He outlined the cycle of chemical changes from limestone (calcium carbonate) to quicklime (calcium oxide) and ‘fixed air’ (carbon dioxide) when heated; quicklime mixed with water to become slaked lime (calcium hydroxide); which when combined with ‘fixed air’ becomes limestone again (turning the solution cloudy).

Although JAN BAPTISTA VAN HELMONT had identified the existence of separate, distinct gases in air over a century before, Black is still often credited with the discovery of carbon dioxide (fixed air) – despite that van Helmont had clearly been aware of its existence.

Black was able to prove that carbon dioxide is made by respiration, through fermentation and in the burning of charcoal, but that the gas would not allow a candle to burn in it nor sustain animal life.

Black’s student Daniel Rutherford (1749 – 1819) called the gas ‘mephitic air’ after the mephitis of legend, a noxious emanation said to cause pestilence, for animals died in an atmosphere of the new gas. Rutherford’s ‘air’ is not, however, the same as Lavoisier’s mephitic air, which is nitrogen (azote).

Observing the effect that removing carbon dioxide from limestone made the latter more alkaline, Black deduced that carbon dioxide is an acidic gas.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT buttonCHEMISTRY

JAMES WATT (1736-1819)

1765 – Glasgow, Lanarkshire, UK

‘Steam engine’

Watt’s steam engine was the driving force behind the industrial revolution and his development of the rotary engine in 1781 brought mechanisation to several industries such as weaving, spinning and transportation.

Portrait of JAMES WATT who developed the steam engine ©

JAMES WATT

Although THOMAS NEWCOMEN had developed the steam engine before Watt was even born, Newcomen’s machines had been confined to the world of mining.

In 1764, when Watt was asked to repair a scale model of Newcomen’s engine he noted its huge inefficiency. The heating and cooling of the cylinder with every stroke wasted huge amounts of fuel; and wasted time in bringing the cylinder back up to steam producing temperature, which limited the frequency of strokes. He realised that the key to improved efficiency lay in condensing the steam in a separate container – thereby allowing the cylinder and piston to remain always hot. Watt continued to improve his steam engine and developed a way to make it work with a circular, rotary motion. Another of his improvements was the production of steam under pressure, thus increasing the temperature gap between source and sink and raising the efficiency in a manner later described by SADI CARNOT and elucidated by JAMES JOULE.

Richard_Arkwright_by_Mather_Brown_1790

RICHARD ARKWRIGHT

RICHARD ARKWRIGHT was the first to realise the engine could be used to spin cotton, and later in weaving. Flour and paper mills were other early adopters, and in 1788 steam power was used to paddle marine transportation. In the same year, Watt developed the ‘centrifugal governor’ to regulate the speed of the engine and to keep it constant.

diagram of the Watt 10hp engine

Watt 10hp engine

Watt was the first to coin the term ‘horsepower’, which he used when comparing how many horses it would require to provide the same pull as one of his machines. In 1882 the British Association named the ‘watt’ unit of power in his honour.

Wikipedia-logo © (link to wikipedia)

HENRY CAVENDISH (1731-1810)TIMELINE

HEATHEAT

JOSEPH MONTGOLFIER (1740-1810)

1783 – France

‘ Frenchmen Joseph-Michel Montgolfier and his brother Jacques-Etienne (1745-99) observed a simple natural phenomenon and realised the ‘unachievable’ ‘

Replica of the historic Montgolfier hot air balloon in flight. --- Image by © Skyscan/CORBIS ©

Replica of the historic Montgolfier hot air balloon in flight

Photograph of a statue depicting the MONTGOLFIER BROTHERS ©

MONTGOLFIER BROTHERS

Wikipedia-logo © (link to wikipedia)

 
 

NEXT buttonTIMELINE

NEXT buttonGAS LAWS