IBN SINA (AVICENNA) (980-1037)

‘al Qann fi al-Tibb’ (The Canon of Medicine), also ‘ The Book of the Remedy

Avicenna lived under the Sammarid caliphs in Bukhara. He identified different forms of energy – heat, light and mechanical – and the idea of a force.

drawing of Ibn Sina ©

AVICENNA

Before GALEN, scientists describing nature followed the old Greek traditions of giving the definitions and following them up with the body of logical development. The investigator was then obliged merely to define the various types of ‘nature’ to be found. With Galen this procedure was changed.

Instead of hunting for these natures and defining more and more of them, reproducing ARISTOTLE’s ideas, AVICENNA, a Persian physician, planned inductive and deductive experimental approaches to determine the conditions producing observable results.

His tome surveyed the entire field of medical knowledge from ancient times up to the most up to date Muslim techniques. Avicenna was the first to note that tuberculosis is contagious; that diseases can spread through soil and water and that a person’s emotions can affect their state of physical health. He was the first to describe meningitis and realize that nerves transmit pain. The book also contained a description of 760 drugs. Its comprehensive and systematic approach meant that once it was translated into Latin in the twelfth century it became the standard medical textbook in Europe for the next 600 years.

Arabic Canon of Medicine by Avicenna 1632. Many physicians in the Islamic world were outstanding medical teachers and practitioners. Avicenna (980-1037 CE) was born near Bokhara in Central Asia. Known as the 'Prince of Physicians', his Canon of Medicine (medical encyclopedia) remained the standard text in both the East and West until the 16th century and still forms the basis of Unani theory and practice today. Divided into five books, this opening shows the start of the third book depicting diseases of the brain.

Arabic Canon of Medicine by Avicenna 1632

Avicenna thought of light as being made up of a stream of particles, produced in the Sun and in flames on Earth, which travel in straight lines and bounce off objects that they strike.

A pinhole in a curtain in a darkened room causes an inverted image to be projected, upside-down, onto a wall opposite the curtained window. The key point is that light travels in straight lines. A straight line from the top of a tree some distance away, in a garden that the window of the camera obscura faces onto – passing through the hole in the curtain – will carry on down to a point near the ground on the wall opposite. A straight line from the base of the tree will go upwards through the hole to strike the wall opposite near the ceiling. Straight lines from every other point on the tree will go through the hole to strike the wall in correspondingly determined spots, the result is an upside-down image of the tree (and of everything else in the garden).

He realized that refraction is a result of light traveling at different speeds in water and in air.

He used several logical arguments to support his contention that sight is not a result of some inner light reaching outward from the eye to probe the world around it, but is solely a result of light entering the eye from the world outside – realizing that ‘after-images’ caused by a bright light will persist when the eyes are closed and reasoning that this can only be the result of something from outside affecting the eyes. By effectively reversing the extro-missive theory of Euclid, he formulated the idea of a cone emanating from outside the eye entering and thus forming an image inside the eye – he thus introduced the modern idea of the ray of light.

The idea which was to have the most profound effect on the scientific development of an understanding of the behaviour of light was the thought of the way images are formed on a sunny day by the ‘camera obscura’.

AL HAZEN (c.965-1039)

Born in Basra and working in Egypt under al-Hakim, Abu Ali al-Hassan ibn al-Haytham was one of the three greatest scientists of Islam (along with al-Biruni and ibn-Sina). He explained how vision works in terms of geometric optics and had a huge influence on Western science. He is regarded as one of the earliest advocates of the scientific method.

The mathematical technique of ‘casting out of nines’, used to verify squares and cubes, is attributed to al-Hazen.

Al-Hazen dissented with the J’bir Ayam hypothesis of transmutation, thus providing two different strands for Alchemy in Europe from the Islāmic world.

diagram explaining the working of the eye

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

 

NEXT buttonMEDICINE

<< top of page

LEONARDO FIBONACCI (c.1170-c.1250)

Also known as Leonardo Pisano. Published ‘Liber Abaci’ in 1202.

1202 – Italy

image of statue of Leonardo Fibonacci ©

FIBONACCI

Picture of a statue of Leonardo Pisano

FIBONACCI

‘A series of numbers in which each successive term is the sum of the preceding two’

For example:   1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144….

The series is known as the Fibonacci sequence and the numbers themselves as the Fibonacci numbers.

The Fibonacci sequence has other interesting mathematical properties – the ratio of successive terms ( larger to smaller;   1/1, 2/1, 3/2, 5/3, 8/5…. ) approaches the number 1.618
This is known as the golden ratio and is denoted by the Greek letter Phi.

Phi was known to ancient Greeks.
Greek architects used the ratio 1:Phi as part of their design, the most famous example of which is the Parthenon in Athens.

Fibonacci sequence in flower petals. flowers often have a Fibonacci number of petals - link to <http://pinterest.com/mcvjfly/fibonacci/>

Fibonacci sequence in flower petals

Phi also occurs in the natural world.
Flowers often have a Fibonacci number of petals.

      

During his travels in North Africa, Fibonacci learned of the decimal system of numbers that had evolved in India and had been taken up by the Arabs.
In his book Liber Abaci he re-introduced to Europe the Arabic numerals that we use today, adhering roughly to the recipe ‘the value represented must be proportional to the number of straight lines in the symbol’.

Following the Arabs, Fibonacci ( ‘son of the simpleton’ euph. or ‘son of the innocent’ ) introduced the place–value concept, with each position representing a different power of ten and these arranged in ascending order from right to left.

Wikipedia-logo © (link to wikipedia)

NEXT button - ALBERTUS MAGNUSNEXT

Related sites

ROGER BACON (1214- 94)

(Doctor Mirabilis) ‘The Marvelous Doctor’

(Franciscan friar) Oxford – 1257

‘Mathematics (The first of the sciences, the alphabet of philosophy, door & key to the sciences), not Logic, should be the basis of all study’

Converted from Aristotelian to a neo-Platonist.

Etching of ROGER BACON Franciscan friar (1214- 94)

ROGER BACON

The Multiplication of Species; the means of causation (change) radiate from one object to another like the propagation of light.

‘An agent directs its effect to making the recipient similar to itself because the recipient is always potentially what the agent is in actuality.’

Thus heat radiating from a fire causes water placed near the fire,
but not in it, to become like the fire (hot). The quality of fire is multiplied in the water (multiplication of species).

All change may be analysed mathematically. Every multiplication is according to line, angles or figures. This thinking comes from the ninth century al-Kinde and his thoughts on rays and leads to a mathematical investigation into light.

Fear of the Mongols, Muslims and the Anti-Christ motivated the Franciscans. Franciscan neo-Platonism was based on Augustinian thought with a mathematical, Pythagorean, approach to nature. Bacon subscribed to this apocalyptical view, suffered trial and was imprisoned.
The Dominicans chose Aristotle – with a qualitative, non-mathematical approach to the world.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

JOHN DEE (1527-1608)

1590 – London, England

portrait of john dee

JOHN DEE

‘Mathematician, cartographer & astronomer. Prolific author, natural magician, alchemist.’

‘Alternative knowledge and methods of learning. ‘Conversations with Angels’. Human power over the world (neo-Platonism).’

Dee was a Hermetic philosopher, a major influence on the ROSICRUCIANS, possibly a spy – astrologer and adviser to Queen Elizabeth I ; he chose the day of her coronation.

One of the greatest scholars of his day. His library in his home in Mortlake, London, contained more than 3,000 books.

Greatly influenced by Edward Kelley (1555- 97), whom he met in 1582; from 1583-1589 Dee and Kelley sought the patronage of assorted mid-European noblemen and kings, eventually finding it from the Bohemian Count Vilem Rosenberg.

In 1589, Dee left Kelley to his alchemical research and returned to England where Queen Elizabeth I granted him a position as a college warden, but he had lost respect owing to his occult reputation. Dee returned to Mortlake in 1605 in poor health and increasing poverty and ended his days as a common fortune-teller.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

RENE DESCARTES (1596-1650)

1637 – France

Cogito ergo sum‘ – The result of a thought experiment resolving to cast doubt on any and all of his beliefs, in order to discover which he was logically justified in holding.

Descartes argued that although all his experience could be the product of deception by an evil daemon, the demon could not deceive him if he did not exist.

His theory that all knowledge could be gathered in a single, complete science and his pursuit of a system of thought by which this could be achieved left him to speculate on the source and the truth of all existing knowledge. He rejected much of what was commonly accepted and only recognised facts that could intuitively be taken as being beyond any doubt.

His work ‘Meditations on First Philosophy’ (1641) is centered on his famous maxim. From this he would pursue all ‘certainties’ via a method of systematic, detailed mental analysis. This ultimately led to a detached, mechanistic interpretation of the natural world, reinforced in his metaphysical text ‘Principia Philosophiae‘ (1644) in which he attempted to explain the universe according to the single system of logical, mechanical laws he had earlier envisaged and which, although largely inaccurate, would have an important influence even after Newton. He envisaged the human body as subject to the same mechanical laws as all matter; distinguished only by the mind, which operated as a distinct, separate entity.

Through his belief in the logical certainty of mathematics and his reasoning that the subject could be applied to give a superior interpretation of the universe came his 1637 appendix to the ‘Discourse’, entitled ‘La Geometrie‘, Descartes sought to describe the application of mathematics to the plotting of a single point in space.

This led to the invention of ‘Cartesian Coordinates’ and allowed geometric expressions such as curves to be written for the first time as algebraic equations. He brought the symbolism of analytical geometry to his equations, thus going beyond what could be drawn. This bringing together of geometry and algebra was a significant breakthrough and could in theory predict the future course of any object in space given enough initial knowledge of its physical properties and movement.

Descartes showed that circular motion is in fact accelerated motion, and requires a cause, as opposed to uniform rectilinear motion in a straight line that has the property of inertia – and if there is to be any change in this motion a cause must be invoked.

By the 1660s, there were two rival theories about light. One, espoused by the French physicist Pierre Gassendi (1592-1655) held that it was a stream of tiny particles, traveling at unimaginably high-speed. The other, put forward by Descartes, suggested that instead of anything physically moving from one place to another the universe was filled with some material (dubbed ‘plenum’), which pressed against the eyes. This pressure, or ‘tendency of motion’, was supposed to produce the phenomenon of sight. Some action of a bright object, like the Sun, was supposed to push outwards. This push was transmitted instantaneously, and would be felt by the human eye looking at a bright object.

There were problems with these ideas. If light is a stream of tiny particles, what happens when two people stand face-to-face looking each other in the eye? And if sight is caused by the pressure of the plenum on the eye, then a person running at night should be able to see, because the runner’s motion would make the plenum press against their eyes.

Descartes original theory is only a small step to a theory involving pulses of pressure spreading out from a bright object, like the pulses of pressure that would travel through water if you slap the surface, and exactly equivalent to pressure waves which explain how sound travels outward from its source.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

Related material

PIERRE DE FERMAT (1601- 65) ANDREW WILES (b.1953)

1637 – France; 1993 – USA

Portrait of PIERRE DE FERMAT

PIERRE DE FERMAT

Fermat’s theorem proves that there are no whole-number solutions of the equation x n + y n = z n for n greater than 2

The problem is based on Pythagoras’ Theorem; in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares on the other two sides; that is x 2 + y 2 = z 2

If x and y are whole numbers then z can also be a whole number: for example 52+ 122 = 132
If the same equation is taken to a higher power than 2, such as x 3 + y 3 = z 3 then z cannot ever be a whole number.

In about 1637, Fermat wrote an equation in the margin of a book and added ‘I have discovered a truly marvelous proof, which this margin is too small to contain’. The problem now called Fermat’s Last Theorem baffled mathematicians for 356 years.

photo of Andrew Wiles in classroom

ANDREW WILES

In 1993, Wiles, a professor of mathematics at Princeton University, finally proved the theorem.

Wiles, born in England, dreamed of proving the theorem ever since he read it at the age of ten in his local library. It took him years of dedicated work to prove it and the 130-page proof was published in the journal ‘Annals of Mathematics‘ in May 1995.

Wikipedia-logo © (link to wikipedia)

NEXT buttonTIMELINE

NEXT button - MATHEMATICSMATHEMATICS

Related sites

GOTTFRIED LEIBNIZ (1646-1716)

1684 – Germany

‘A new method for maxima and minima, as well as tangents … and a curious type of calculation’

Newton invented calculus (fluxions) as early as 1665, but did not publish his major work until 1687. The controversy continued for years, but it is now thought that each developed calculus independently.
Terminology and notation of calculus as we know it today is due to Leibniz. He also introduced many other mathematical symbols: the decimal point, the equals sign, the colon (:) for division and ratio, and the dot for multiplication.

Wikipedia-logo © (link to wikipedia)

NEXT buttonNEXT

MECHANICSMECHANICS